Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+7y=111,5x-2y=122
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+7y=111
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-7y+111
Subtract 7y from both sides of the equation.
x=\frac{1}{2}\left(-7y+111\right)
Divide both sides by 2.
x=-\frac{7}{2}y+\frac{111}{2}
Multiply \frac{1}{2} times -7y+111.
5\left(-\frac{7}{2}y+\frac{111}{2}\right)-2y=122
Substitute \frac{-7y+111}{2} for x in the other equation, 5x-2y=122.
-\frac{35}{2}y+\frac{555}{2}-2y=122
Multiply 5 times \frac{-7y+111}{2}.
-\frac{39}{2}y+\frac{555}{2}=122
Add -\frac{35y}{2} to -2y.
-\frac{39}{2}y=-\frac{311}{2}
Subtract \frac{555}{2} from both sides of the equation.
y=\frac{311}{39}
Divide both sides of the equation by -\frac{39}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{2}\times \frac{311}{39}+\frac{111}{2}
Substitute \frac{311}{39} for y in x=-\frac{7}{2}y+\frac{111}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{2177}{78}+\frac{111}{2}
Multiply -\frac{7}{2} times \frac{311}{39} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1076}{39}
Add \frac{111}{2} to -\frac{2177}{78} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1076}{39},y=\frac{311}{39}
The system is now solved.
2x+7y=111,5x-2y=122
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&7\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}111\\122\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&7\\5&-2\end{matrix}\right))\left(\begin{matrix}2&7\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\5&-2\end{matrix}\right))\left(\begin{matrix}111\\122\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&7\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\5&-2\end{matrix}\right))\left(\begin{matrix}111\\122\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\5&-2\end{matrix}\right))\left(\begin{matrix}111\\122\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-7\times 5}&-\frac{7}{2\left(-2\right)-7\times 5}\\-\frac{5}{2\left(-2\right)-7\times 5}&\frac{2}{2\left(-2\right)-7\times 5}\end{matrix}\right)\left(\begin{matrix}111\\122\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{39}&\frac{7}{39}\\\frac{5}{39}&-\frac{2}{39}\end{matrix}\right)\left(\begin{matrix}111\\122\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{39}\times 111+\frac{7}{39}\times 122\\\frac{5}{39}\times 111-\frac{2}{39}\times 122\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1076}{39}\\\frac{311}{39}\end{matrix}\right)
Do the arithmetic.
x=\frac{1076}{39},y=\frac{311}{39}
Extract the matrix elements x and y.
2x+7y=111,5x-2y=122
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 2x+5\times 7y=5\times 111,2\times 5x+2\left(-2\right)y=2\times 122
To make 2x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 2.
10x+35y=555,10x-4y=244
Simplify.
10x-10x+35y+4y=555-244
Subtract 10x-4y=244 from 10x+35y=555 by subtracting like terms on each side of the equal sign.
35y+4y=555-244
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
39y=555-244
Add 35y to 4y.
39y=311
Add 555 to -244.
y=\frac{311}{39}
Divide both sides by 39.
5x-2\times \frac{311}{39}=122
Substitute \frac{311}{39} for y in 5x-2y=122. Because the resulting equation contains only one variable, you can solve for x directly.
5x-\frac{622}{39}=122
Multiply -2 times \frac{311}{39}.
5x=\frac{5380}{39}
Add \frac{622}{39} to both sides of the equation.
x=\frac{1076}{39}
Divide both sides by 5.
x=\frac{1076}{39},y=\frac{311}{39}
The system is now solved.