Solve for x, z, y
x = \frac{31}{3} = 10\frac{1}{3} \approx 10.333333333
y=13
z = \frac{31}{3} = 10\frac{1}{3} \approx 10.333333333
Share
Copied to clipboard
2z-2y+x=5 2x+4z-5y=-3 -4y+x+5z=10
Reorder the equations.
x=-2z+2y+5
Solve 2z-2y+x=5 for x.
2\left(-2z+2y+5\right)+4z-5y=-3 -4y-2z+2y+5+5z=10
Substitute -2z+2y+5 for x in the second and third equation.
y=13 z=\frac{2}{3}y+\frac{5}{3}
Solve these equations for y and z respectively.
z=\frac{2}{3}\times 13+\frac{5}{3}
Substitute 13 for y in the equation z=\frac{2}{3}y+\frac{5}{3}.
z=\frac{31}{3}
Calculate z from z=\frac{2}{3}\times 13+\frac{5}{3}.
x=-2\times \frac{31}{3}+2\times 13+5
Substitute 13 for y and \frac{31}{3} for z in the equation x=-2z+2y+5.
x=\frac{31}{3}
Calculate x from x=-2\times \frac{31}{3}+2\times 13+5.
x=\frac{31}{3} z=\frac{31}{3} y=13
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}