Solve for x, y
x = \frac{11}{3} = 3\frac{2}{3} \approx 3.666666667
y = \frac{19}{3} = 6\frac{1}{3} \approx 6.333333333
Graph
Share
Copied to clipboard
y-2x=-1
Consider the second equation. Subtract 2x from both sides.
2x+2y=20,-2x+y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+2y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-2y+20
Subtract 2y from both sides of the equation.
x=\frac{1}{2}\left(-2y+20\right)
Divide both sides by 2.
x=-y+10
Multiply \frac{1}{2} times -2y+20.
-2\left(-y+10\right)+y=-1
Substitute -y+10 for x in the other equation, -2x+y=-1.
2y-20+y=-1
Multiply -2 times -y+10.
3y-20=-1
Add 2y to y.
3y=19
Add 20 to both sides of the equation.
y=\frac{19}{3}
Divide both sides by 3.
x=-\frac{19}{3}+10
Substitute \frac{19}{3} for y in x=-y+10. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{11}{3}
Add 10 to -\frac{19}{3}.
x=\frac{11}{3},y=\frac{19}{3}
The system is now solved.
y-2x=-1
Consider the second equation. Subtract 2x from both sides.
2x+2y=20,-2x+y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&2\\-2&1\end{matrix}\right))\left(\begin{matrix}2&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&1\end{matrix}\right))\left(\begin{matrix}20\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&2\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&1\end{matrix}\right))\left(\begin{matrix}20\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&1\end{matrix}\right))\left(\begin{matrix}20\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-2\left(-2\right)}&-\frac{2}{2-2\left(-2\right)}\\-\frac{-2}{2-2\left(-2\right)}&\frac{2}{2-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}20\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}20\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 20-\frac{1}{3}\left(-1\right)\\\frac{1}{3}\times 20+\frac{1}{3}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{3}\\\frac{19}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{11}{3},y=\frac{19}{3}
Extract the matrix elements x and y.
y-2x=-1
Consider the second equation. Subtract 2x from both sides.
2x+2y=20,-2x+y=-1
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\times 2x-2\times 2y=-2\times 20,2\left(-2\right)x+2y=2\left(-1\right)
To make 2x and -2x equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 2.
-4x-4y=-40,-4x+2y=-2
Simplify.
-4x+4x-4y-2y=-40+2
Subtract -4x+2y=-2 from -4x-4y=-40 by subtracting like terms on each side of the equal sign.
-4y-2y=-40+2
Add -4x to 4x. Terms -4x and 4x cancel out, leaving an equation with only one variable that can be solved.
-6y=-40+2
Add -4y to -2y.
-6y=-38
Add -40 to 2.
y=\frac{19}{3}
Divide both sides by -6.
-2x+\frac{19}{3}=-1
Substitute \frac{19}{3} for y in -2x+y=-1. Because the resulting equation contains only one variable, you can solve for x directly.
-2x=-\frac{22}{3}
Subtract \frac{19}{3} from both sides of the equation.
x=\frac{11}{3}
Divide both sides by -2.
x=\frac{11}{3},y=\frac{19}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}