Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x+x-y=12
Consider the first equation. Multiply both sides of the equation by 6.
13x-y=12
Combine 12x and x to get 13x.
3x-\left(2x+y\right)=3
Consider the second equation. Multiply both sides of the equation by 3.
3x-2x-y=3
To find the opposite of 2x+y, find the opposite of each term.
x-y=3
Combine 3x and -2x to get x.
13x-y=12,x-y=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
13x-y=12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
13x=y+12
Add y to both sides of the equation.
x=\frac{1}{13}\left(y+12\right)
Divide both sides by 13.
x=\frac{1}{13}y+\frac{12}{13}
Multiply \frac{1}{13} times y+12.
\frac{1}{13}y+\frac{12}{13}-y=3
Substitute \frac{12+y}{13} for x in the other equation, x-y=3.
-\frac{12}{13}y+\frac{12}{13}=3
Add \frac{y}{13} to -y.
-\frac{12}{13}y=\frac{27}{13}
Subtract \frac{12}{13} from both sides of the equation.
y=-\frac{9}{4}
Divide both sides of the equation by -\frac{12}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1}{13}\left(-\frac{9}{4}\right)+\frac{12}{13}
Substitute -\frac{9}{4} for y in x=\frac{1}{13}y+\frac{12}{13}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{9}{52}+\frac{12}{13}
Multiply \frac{1}{13} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{4}
Add \frac{12}{13} to -\frac{9}{52} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{4},y=-\frac{9}{4}
The system is now solved.
12x+x-y=12
Consider the first equation. Multiply both sides of the equation by 6.
13x-y=12
Combine 12x and x to get 13x.
3x-\left(2x+y\right)=3
Consider the second equation. Multiply both sides of the equation by 3.
3x-2x-y=3
To find the opposite of 2x+y, find the opposite of each term.
x-y=3
Combine 3x and -2x to get x.
13x-y=12,x-y=3
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}13&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\3\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}13&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}13&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}12\\3\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}13&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}12\\3\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}12\\3\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13\left(-1\right)-\left(-1\right)}&-\frac{-1}{13\left(-1\right)-\left(-1\right)}\\-\frac{1}{13\left(-1\right)-\left(-1\right)}&\frac{13}{13\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}12\\3\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&-\frac{1}{12}\\\frac{1}{12}&-\frac{13}{12}\end{matrix}\right)\left(\begin{matrix}12\\3\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 12-\frac{1}{12}\times 3\\\frac{1}{12}\times 12-\frac{13}{12}\times 3\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\-\frac{9}{4}\end{matrix}\right)
Do the arithmetic.
x=\frac{3}{4},y=-\frac{9}{4}
Extract the matrix elements x and y.
12x+x-y=12
Consider the first equation. Multiply both sides of the equation by 6.
13x-y=12
Combine 12x and x to get 13x.
3x-\left(2x+y\right)=3
Consider the second equation. Multiply both sides of the equation by 3.
3x-2x-y=3
To find the opposite of 2x+y, find the opposite of each term.
x-y=3
Combine 3x and -2x to get x.
13x-y=12,x-y=3
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
13x-x-y+y=12-3
Subtract x-y=3 from 13x-y=12 by subtracting like terms on each side of the equal sign.
13x-x=12-3
Add -y to y. Terms -y and y cancel out, leaving an equation with only one variable that can be solved.
12x=12-3
Add 13x to -x.
12x=9
Add 12 to -3.
x=\frac{3}{4}
Divide both sides by 12.
\frac{3}{4}-y=3
Substitute \frac{3}{4} for x in x-y=3. Because the resulting equation contains only one variable, you can solve for y directly.
-y=\frac{9}{4}
Subtract \frac{3}{4} from both sides of the equation.
x=\frac{3}{4},y=-\frac{9}{4}
The system is now solved.