Solve for s, c
s=-928
c = \frac{1867}{3} = 622\frac{1}{3} \approx 622.333333333
Share
Copied to clipboard
2s+3c=11,3s+6c=950
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2s+3c=11
Choose one of the equations and solve it for s by isolating s on the left hand side of the equal sign.
2s=-3c+11
Subtract 3c from both sides of the equation.
s=\frac{1}{2}\left(-3c+11\right)
Divide both sides by 2.
s=-\frac{3}{2}c+\frac{11}{2}
Multiply \frac{1}{2} times -3c+11.
3\left(-\frac{3}{2}c+\frac{11}{2}\right)+6c=950
Substitute \frac{-3c+11}{2} for s in the other equation, 3s+6c=950.
-\frac{9}{2}c+\frac{33}{2}+6c=950
Multiply 3 times \frac{-3c+11}{2}.
\frac{3}{2}c+\frac{33}{2}=950
Add -\frac{9c}{2} to 6c.
\frac{3}{2}c=\frac{1867}{2}
Subtract \frac{33}{2} from both sides of the equation.
c=\frac{1867}{3}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
s=-\frac{3}{2}\times \frac{1867}{3}+\frac{11}{2}
Substitute \frac{1867}{3} for c in s=-\frac{3}{2}c+\frac{11}{2}. Because the resulting equation contains only one variable, you can solve for s directly.
s=\frac{-1867+11}{2}
Multiply -\frac{3}{2} times \frac{1867}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
s=-928
Add \frac{11}{2} to -\frac{1867}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
s=-928,c=\frac{1867}{3}
The system is now solved.
2s+3c=11,3s+6c=950
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&6\end{matrix}\right)\left(\begin{matrix}s\\c\end{matrix}\right)=\left(\begin{matrix}11\\950\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&6\end{matrix}\right))\left(\begin{matrix}2&3\\3&6\end{matrix}\right)\left(\begin{matrix}s\\c\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&6\end{matrix}\right))\left(\begin{matrix}11\\950\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}s\\c\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&6\end{matrix}\right))\left(\begin{matrix}11\\950\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}s\\c\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&6\end{matrix}\right))\left(\begin{matrix}11\\950\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}s\\c\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-3\times 3}&-\frac{3}{2\times 6-3\times 3}\\-\frac{3}{2\times 6-3\times 3}&\frac{2}{2\times 6-3\times 3}\end{matrix}\right)\left(\begin{matrix}11\\950\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}s\\c\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}11\\950\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}s\\c\end{matrix}\right)=\left(\begin{matrix}2\times 11-950\\-11+\frac{2}{3}\times 950\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}s\\c\end{matrix}\right)=\left(\begin{matrix}-928\\\frac{1867}{3}\end{matrix}\right)
Do the arithmetic.
s=-928,c=\frac{1867}{3}
Extract the matrix elements s and c.
2s+3c=11,3s+6c=950
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2s+3\times 3c=3\times 11,2\times 3s+2\times 6c=2\times 950
To make 2s and 3s equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6s+9c=33,6s+12c=1900
Simplify.
6s-6s+9c-12c=33-1900
Subtract 6s+12c=1900 from 6s+9c=33 by subtracting like terms on each side of the equal sign.
9c-12c=33-1900
Add 6s to -6s. Terms 6s and -6s cancel out, leaving an equation with only one variable that can be solved.
-3c=33-1900
Add 9c to -12c.
-3c=-1867
Add 33 to -1900.
c=\frac{1867}{3}
Divide both sides by -3.
3s+6\times \frac{1867}{3}=950
Substitute \frac{1867}{3} for c in 3s+6c=950. Because the resulting equation contains only one variable, you can solve for s directly.
3s+3734=950
Multiply 6 times \frac{1867}{3}.
3s=-2784
Subtract 3734 from both sides of the equation.
s=-928
Divide both sides by 3.
s=-928,c=\frac{1867}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}