Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-3b^{2}+2b+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 15}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-2±\sqrt{4-4\left(-3\right)\times 15}}{2\left(-3\right)}
Square 2.
b=\frac{-2±\sqrt{4+12\times 15}}{2\left(-3\right)}
Multiply -4 times -3.
b=\frac{-2±\sqrt{4+180}}{2\left(-3\right)}
Multiply 12 times 15.
b=\frac{-2±\sqrt{184}}{2\left(-3\right)}
Add 4 to 180.
b=\frac{-2±2\sqrt{46}}{2\left(-3\right)}
Take the square root of 184.
b=\frac{-2±2\sqrt{46}}{-6}
Multiply 2 times -3.
b=\frac{2\sqrt{46}-2}{-6}
Now solve the equation b=\frac{-2±2\sqrt{46}}{-6} when ± is plus. Add -2 to 2\sqrt{46}.
b=\frac{1-\sqrt{46}}{3}
Divide -2+2\sqrt{46} by -6.
b=\frac{-2\sqrt{46}-2}{-6}
Now solve the equation b=\frac{-2±2\sqrt{46}}{-6} when ± is minus. Subtract 2\sqrt{46} from -2.
b=\frac{\sqrt{46}+1}{3}
Divide -2-2\sqrt{46} by -6.
-3b^{2}+2b+15=-3\left(b-\frac{1-\sqrt{46}}{3}\right)\left(b-\frac{\sqrt{46}+1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1-\sqrt{46}}{3} for x_{1} and \frac{1+\sqrt{46}}{3} for x_{2}.