Solve for a, d
a=-63
d=21
Share
Copied to clipboard
2a+6d=0,a+4d=21
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a+6d=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=-6d
Subtract 6d from both sides of the equation.
a=\frac{1}{2}\left(-6\right)d
Divide both sides by 2.
a=-3d
Multiply \frac{1}{2} times -6d.
-3d+4d=21
Substitute -3d for a in the other equation, a+4d=21.
d=21
Add -3d to 4d.
a=-3\times 21
Substitute 21 for d in a=-3d. Because the resulting equation contains only one variable, you can solve for a directly.
a=-63
Multiply -3 times 21.
a=-63,d=21
The system is now solved.
2a+6d=0,a+4d=21
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&6\\1&4\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}0\\21\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&6\\1&4\end{matrix}\right))\left(\begin{matrix}2&6\\1&4\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\1&4\end{matrix}\right))\left(\begin{matrix}0\\21\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&6\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\1&4\end{matrix}\right))\left(\begin{matrix}0\\21\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\d\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\1&4\end{matrix}\right))\left(\begin{matrix}0\\21\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-6}&-\frac{6}{2\times 4-6}\\-\frac{1}{2\times 4-6}&\frac{2}{2\times 4-6}\end{matrix}\right)\left(\begin{matrix}0\\21\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}2&-3\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}0\\21\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}-3\times 21\\21\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\d\end{matrix}\right)=\left(\begin{matrix}-63\\21\end{matrix}\right)
Do the arithmetic.
a=-63,d=21
Extract the matrix elements a and d.
2a+6d=0,a+4d=21
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2a+6d=0,2a+2\times 4d=2\times 21
To make 2a and a equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 2.
2a+6d=0,2a+8d=42
Simplify.
2a-2a+6d-8d=-42
Subtract 2a+8d=42 from 2a+6d=0 by subtracting like terms on each side of the equal sign.
6d-8d=-42
Add 2a to -2a. Terms 2a and -2a cancel out, leaving an equation with only one variable that can be solved.
-2d=-42
Add 6d to -8d.
d=21
Divide both sides by -2.
a+4\times 21=21
Substitute 21 for d in a+4d=21. Because the resulting equation contains only one variable, you can solve for a directly.
a+84=21
Multiply 4 times 21.
a=-63
Subtract 84 from both sides of the equation.
a=-63,d=21
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}