Solve for x
x=\frac{8a-4}{29}
Graph
Share
Copied to clipboard
2=4a-\frac{29}{2}x
Reduce the fraction \frac{87}{6} to lowest terms by extracting and canceling out 3.
4a-\frac{29}{2}x=2
Swap sides so that all variable terms are on the left hand side.
-\frac{29}{2}x=2-4a
Subtract 4a from both sides.
\frac{-\frac{29}{2}x}{-\frac{29}{2}}=\frac{2-4a}{-\frac{29}{2}}
Divide both sides of the equation by -\frac{29}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{2-4a}{-\frac{29}{2}}
Dividing by -\frac{29}{2} undoes the multiplication by -\frac{29}{2}.
x=\frac{8a-4}{29}
Divide 2-4a by -\frac{29}{2} by multiplying 2-4a by the reciprocal of -\frac{29}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}