Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-\frac{2}{9}y-\frac{1}{6}z+\frac{1}{6}
Solve 18x+4y+3z=3 for x.
6\left(-\frac{2}{9}y-\frac{1}{6}z+\frac{1}{6}\right)-15y-2z=49 3\left(-\frac{2}{9}y-\frac{1}{6}z+\frac{1}{6}\right)-9y-20z=-41
Substitute -\frac{2}{9}y-\frac{1}{6}z+\frac{1}{6} for x in the second and third equation.
y=-\frac{144}{49}-\frac{9}{49}z z=\frac{83}{41}-\frac{58}{123}y
Solve these equations for y and z respectively.
z=\frac{83}{41}-\frac{58}{123}\left(-\frac{144}{49}-\frac{9}{49}z\right)
Substitute -\frac{144}{49}-\frac{9}{49}z for y in the equation z=\frac{83}{41}-\frac{58}{123}y.
z=\frac{6851}{1835}
Solve z=\frac{83}{41}-\frac{58}{123}\left(-\frac{144}{49}-\frac{9}{49}z\right) for z.
y=-\frac{144}{49}-\frac{9}{49}\times \frac{6851}{1835}
Substitute \frac{6851}{1835} for z in the equation y=-\frac{144}{49}-\frac{9}{49}z.
y=-\frac{6651}{1835}
Calculate y from y=-\frac{144}{49}-\frac{9}{49}\times \frac{6851}{1835}.
x=-\frac{2}{9}\left(-\frac{6651}{1835}\right)-\frac{1}{6}\times \frac{6851}{1835}+\frac{1}{6}
Substitute -\frac{6651}{1835} for y and \frac{6851}{1835} for z in the equation x=-\frac{2}{9}y-\frac{1}{6}z+\frac{1}{6}.
x=\frac{642}{1835}
Calculate x from x=-\frac{2}{9}\left(-\frac{6651}{1835}\right)-\frac{1}{6}\times \frac{6851}{1835}+\frac{1}{6}.
x=\frac{642}{1835} y=-\frac{6651}{1835} z=\frac{6851}{1835}
The system is now solved.