Solve for x, y
x=\frac{281\sqrt{15}}{454}+\frac{193}{227}\approx 3.247375155
y=-\frac{173\sqrt{15}}{454}+\frac{193}{227}\approx -0.625608191
Graph
Share
Copied to clipboard
173x+281y=386,x-y=\sqrt{15}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
173x+281y=386
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
173x=-281y+386
Subtract 281y from both sides of the equation.
x=\frac{1}{173}\left(-281y+386\right)
Divide both sides by 173.
x=-\frac{281}{173}y+\frac{386}{173}
Multiply \frac{1}{173} times -281y+386.
-\frac{281}{173}y+\frac{386}{173}-y=\sqrt{15}
Substitute \frac{-281y+386}{173} for x in the other equation, x-y=\sqrt{15}.
-\frac{454}{173}y+\frac{386}{173}=\sqrt{15}
Add -\frac{281y}{173} to -y.
-\frac{454}{173}y=\sqrt{15}-\frac{386}{173}
Subtract \frac{386}{173} from both sides of the equation.
y=-\frac{173\sqrt{15}}{454}+\frac{193}{227}
Divide both sides of the equation by -\frac{454}{173}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{281}{173}\left(-\frac{173\sqrt{15}}{454}+\frac{193}{227}\right)+\frac{386}{173}
Substitute -\frac{173\sqrt{15}}{454}+\frac{193}{227} for y in x=-\frac{281}{173}y+\frac{386}{173}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{281\sqrt{15}}{454}-\frac{54233}{39271}+\frac{386}{173}
Multiply -\frac{281}{173} times -\frac{173\sqrt{15}}{454}+\frac{193}{227}.
x=\frac{281\sqrt{15}}{454}+\frac{193}{227}
Add \frac{386}{173} to -\frac{54233}{39271}+\frac{281\sqrt{15}}{454}.
x=\frac{281\sqrt{15}}{454}+\frac{193}{227},y=-\frac{173\sqrt{15}}{454}+\frac{193}{227}
The system is now solved.
173x+281y=386,x-y=\sqrt{15}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
173x+281y=386,173x+173\left(-1\right)y=173\sqrt{15}
To make 173x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 173.
173x+281y=386,173x-173y=173\sqrt{15}
Simplify.
173x-173x+281y+173y=386-173\sqrt{15}
Subtract 173x-173y=173\sqrt{15} from 173x+281y=386 by subtracting like terms on each side of the equal sign.
281y+173y=386-173\sqrt{15}
Add 173x to -173x. Terms 173x and -173x cancel out, leaving an equation with only one variable that can be solved.
454y=386-173\sqrt{15}
Add 281y to 173y.
y=-\frac{173\sqrt{15}}{454}+\frac{193}{227}
Divide both sides by 454.
x-\left(-\frac{173\sqrt{15}}{454}+\frac{193}{227}\right)=\sqrt{15}
Substitute \frac{193}{227}-\frac{173\sqrt{15}}{454} for y in x-y=\sqrt{15}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{281\sqrt{15}}{454}+\frac{193}{227}
Subtract -\frac{193}{227}+\frac{173\sqrt{15}}{454} from both sides of the equation.
x=\frac{281\sqrt{15}}{454}+\frac{193}{227},y=-\frac{173\sqrt{15}}{454}+\frac{193}{227}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}