Solve for x, y
x=2000
y=3000
Graph
Share
Copied to clipboard
15x+9y=57000,10x+16y=68000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x+9y=57000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=-9y+57000
Subtract 9y from both sides of the equation.
x=\frac{1}{15}\left(-9y+57000\right)
Divide both sides by 15.
x=-\frac{3}{5}y+3800
Multiply \frac{1}{15} times -9y+57000.
10\left(-\frac{3}{5}y+3800\right)+16y=68000
Substitute -\frac{3y}{5}+3800 for x in the other equation, 10x+16y=68000.
-6y+38000+16y=68000
Multiply 10 times -\frac{3y}{5}+3800.
10y+38000=68000
Add -6y to 16y.
10y=30000
Subtract 38000 from both sides of the equation.
y=3000
Divide both sides by 10.
x=-\frac{3}{5}\times 3000+3800
Substitute 3000 for y in x=-\frac{3}{5}y+3800. Because the resulting equation contains only one variable, you can solve for x directly.
x=-1800+3800
Multiply -\frac{3}{5} times 3000.
x=2000
Add 3800 to -1800.
x=2000,y=3000
The system is now solved.
15x+9y=57000,10x+16y=68000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&9\\10&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}57000\\68000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&9\\10&16\end{matrix}\right))\left(\begin{matrix}15&9\\10&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&9\\10&16\end{matrix}\right))\left(\begin{matrix}57000\\68000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&9\\10&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&9\\10&16\end{matrix}\right))\left(\begin{matrix}57000\\68000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&9\\10&16\end{matrix}\right))\left(\begin{matrix}57000\\68000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{15\times 16-9\times 10}&-\frac{9}{15\times 16-9\times 10}\\-\frac{10}{15\times 16-9\times 10}&\frac{15}{15\times 16-9\times 10}\end{matrix}\right)\left(\begin{matrix}57000\\68000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{75}&-\frac{3}{50}\\-\frac{1}{15}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}57000\\68000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{75}\times 57000-\frac{3}{50}\times 68000\\-\frac{1}{15}\times 57000+\frac{1}{10}\times 68000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2000\\3000\end{matrix}\right)
Do the arithmetic.
x=2000,y=3000
Extract the matrix elements x and y.
15x+9y=57000,10x+16y=68000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 15x+10\times 9y=10\times 57000,15\times 10x+15\times 16y=15\times 68000
To make 15x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 15.
150x+90y=570000,150x+240y=1020000
Simplify.
150x-150x+90y-240y=570000-1020000
Subtract 150x+240y=1020000 from 150x+90y=570000 by subtracting like terms on each side of the equal sign.
90y-240y=570000-1020000
Add 150x to -150x. Terms 150x and -150x cancel out, leaving an equation with only one variable that can be solved.
-150y=570000-1020000
Add 90y to -240y.
-150y=-450000
Add 570000 to -1020000.
y=3000
Divide both sides by -150.
10x+16\times 3000=68000
Substitute 3000 for y in 10x+16y=68000. Because the resulting equation contains only one variable, you can solve for x directly.
10x+48000=68000
Multiply 16 times 3000.
10x=20000
Subtract 48000 from both sides of the equation.
x=2000
Divide both sides by 10.
x=2000,y=3000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}