Solve for x, y
x=-21
y=-15
Graph
Share
Copied to clipboard
13x+7y=-378,x-4y=39
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
13x+7y=-378
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
13x=-7y-378
Subtract 7y from both sides of the equation.
x=\frac{1}{13}\left(-7y-378\right)
Divide both sides by 13.
x=-\frac{7}{13}y-\frac{378}{13}
Multiply \frac{1}{13} times -7y-378.
-\frac{7}{13}y-\frac{378}{13}-4y=39
Substitute \frac{-7y-378}{13} for x in the other equation, x-4y=39.
-\frac{59}{13}y-\frac{378}{13}=39
Add -\frac{7y}{13} to -4y.
-\frac{59}{13}y=\frac{885}{13}
Add \frac{378}{13} to both sides of the equation.
y=-15
Divide both sides of the equation by -\frac{59}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{13}\left(-15\right)-\frac{378}{13}
Substitute -15 for y in x=-\frac{7}{13}y-\frac{378}{13}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{105-378}{13}
Multiply -\frac{7}{13} times -15.
x=-21
Add -\frac{378}{13} to \frac{105}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-21,y=-15
The system is now solved.
13x+7y=-378,x-4y=39
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}13&7\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-378\\39\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}13&7\\1&-4\end{matrix}\right))\left(\begin{matrix}13&7\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&7\\1&-4\end{matrix}\right))\left(\begin{matrix}-378\\39\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}13&7\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&7\\1&-4\end{matrix}\right))\left(\begin{matrix}-378\\39\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&7\\1&-4\end{matrix}\right))\left(\begin{matrix}-378\\39\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{13\left(-4\right)-7}&-\frac{7}{13\left(-4\right)-7}\\-\frac{1}{13\left(-4\right)-7}&\frac{13}{13\left(-4\right)-7}\end{matrix}\right)\left(\begin{matrix}-378\\39\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{59}&\frac{7}{59}\\\frac{1}{59}&-\frac{13}{59}\end{matrix}\right)\left(\begin{matrix}-378\\39\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{59}\left(-378\right)+\frac{7}{59}\times 39\\\frac{1}{59}\left(-378\right)-\frac{13}{59}\times 39\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-21\\-15\end{matrix}\right)
Do the arithmetic.
x=-21,y=-15
Extract the matrix elements x and y.
13x+7y=-378,x-4y=39
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
13x+7y=-378,13x+13\left(-4\right)y=13\times 39
To make 13x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 13.
13x+7y=-378,13x-52y=507
Simplify.
13x-13x+7y+52y=-378-507
Subtract 13x-52y=507 from 13x+7y=-378 by subtracting like terms on each side of the equal sign.
7y+52y=-378-507
Add 13x to -13x. Terms 13x and -13x cancel out, leaving an equation with only one variable that can be solved.
59y=-378-507
Add 7y to 52y.
59y=-885
Add -378 to -507.
y=-15
Divide both sides by 59.
x-4\left(-15\right)=39
Substitute -15 for y in x-4y=39. Because the resulting equation contains only one variable, you can solve for x directly.
x+60=39
Multiply -4 times -15.
x=-21
Subtract 60 from both sides of the equation.
x=-21,y=-15
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}