Solve for b, f, s
s = \frac{33}{5} = 6\frac{3}{5} = 6.6
b = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
f = \frac{29}{14} = 2\frac{1}{14} \approx 2.071428571
Share
Copied to clipboard
27-9b-5b=14-8b+6
Consider the first equation. Add 12 and 15 to get 27.
27-14b=14-8b+6
Combine -9b and -5b to get -14b.
27-14b=20-8b
Add 14 and 6 to get 20.
27-14b+8b=20
Add 8b to both sides.
27-6b=20
Combine -14b and 8b to get -6b.
-6b=20-27
Subtract 27 from both sides.
-6b=-7
Subtract 27 from 20 to get -7.
b=\frac{-7}{-6}
Divide both sides by -6.
b=\frac{7}{6}
Fraction \frac{-7}{-6} can be simplified to \frac{7}{6} by removing the negative sign from both the numerator and the denominator.
-9f+49-78+23f=0
Consider the second equation. Combine 4f and -13f to get -9f.
-9f-29+23f=0
Subtract 78 from 49 to get -29.
14f-29=0
Combine -9f and 23f to get 14f.
14f=29
Add 29 to both sides. Anything plus zero gives itself.
f=\frac{29}{14}
Divide both sides by 14.
13s-65-4\left(s-1\right)+s=5
Consider the third equation. Use the distributive property to multiply 13 by s-5.
13s-65-4s+4+s=5
Use the distributive property to multiply -4 by s-1.
9s-65+4+s=5
Combine 13s and -4s to get 9s.
9s-61+s=5
Add -65 and 4 to get -61.
10s-61=5
Combine 9s and s to get 10s.
10s=5+61
Add 61 to both sides.
10s=66
Add 5 and 61 to get 66.
s=\frac{66}{10}
Divide both sides by 10.
s=\frac{33}{5}
Reduce the fraction \frac{66}{10} to lowest terms by extracting and canceling out 2.
b=\frac{7}{6} f=\frac{29}{14} s=\frac{33}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}