Solve for x, y
x = \frac{251}{127} = 1\frac{124}{127} \approx 1.976377953
y = \frac{144}{127} = 1\frac{17}{127} \approx 1.133858268
Graph
Share
Copied to clipboard
11x-13y=7,17x+3y=37
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
11x-13y=7
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
11x=13y+7
Add 13y to both sides of the equation.
x=\frac{1}{11}\left(13y+7\right)
Divide both sides by 11.
x=\frac{13}{11}y+\frac{7}{11}
Multiply \frac{1}{11} times 13y+7.
17\left(\frac{13}{11}y+\frac{7}{11}\right)+3y=37
Substitute \frac{13y+7}{11} for x in the other equation, 17x+3y=37.
\frac{221}{11}y+\frac{119}{11}+3y=37
Multiply 17 times \frac{13y+7}{11}.
\frac{254}{11}y+\frac{119}{11}=37
Add \frac{221y}{11} to 3y.
\frac{254}{11}y=\frac{288}{11}
Subtract \frac{119}{11} from both sides of the equation.
y=\frac{144}{127}
Divide both sides of the equation by \frac{254}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{13}{11}\times \frac{144}{127}+\frac{7}{11}
Substitute \frac{144}{127} for y in x=\frac{13}{11}y+\frac{7}{11}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1872}{1397}+\frac{7}{11}
Multiply \frac{13}{11} times \frac{144}{127} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{251}{127}
Add \frac{7}{11} to \frac{1872}{1397} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{251}{127},y=\frac{144}{127}
The system is now solved.
11x-13y=7,17x+3y=37
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}11&-13\\17&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\37\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}11&-13\\17&3\end{matrix}\right))\left(\begin{matrix}11&-13\\17&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&-13\\17&3\end{matrix}\right))\left(\begin{matrix}7\\37\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}11&-13\\17&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&-13\\17&3\end{matrix}\right))\left(\begin{matrix}7\\37\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&-13\\17&3\end{matrix}\right))\left(\begin{matrix}7\\37\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11\times 3-\left(-13\times 17\right)}&-\frac{-13}{11\times 3-\left(-13\times 17\right)}\\-\frac{17}{11\times 3-\left(-13\times 17\right)}&\frac{11}{11\times 3-\left(-13\times 17\right)}\end{matrix}\right)\left(\begin{matrix}7\\37\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{254}&\frac{13}{254}\\-\frac{17}{254}&\frac{11}{254}\end{matrix}\right)\left(\begin{matrix}7\\37\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{254}\times 7+\frac{13}{254}\times 37\\-\frac{17}{254}\times 7+\frac{11}{254}\times 37\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{251}{127}\\\frac{144}{127}\end{matrix}\right)
Do the arithmetic.
x=\frac{251}{127},y=\frac{144}{127}
Extract the matrix elements x and y.
11x-13y=7,17x+3y=37
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
17\times 11x+17\left(-13\right)y=17\times 7,11\times 17x+11\times 3y=11\times 37
To make 11x and 17x equal, multiply all terms on each side of the first equation by 17 and all terms on each side of the second by 11.
187x-221y=119,187x+33y=407
Simplify.
187x-187x-221y-33y=119-407
Subtract 187x+33y=407 from 187x-221y=119 by subtracting like terms on each side of the equal sign.
-221y-33y=119-407
Add 187x to -187x. Terms 187x and -187x cancel out, leaving an equation with only one variable that can be solved.
-254y=119-407
Add -221y to -33y.
-254y=-288
Add 119 to -407.
y=\frac{144}{127}
Divide both sides by -254.
17x+3\times \frac{144}{127}=37
Substitute \frac{144}{127} for y in 17x+3y=37. Because the resulting equation contains only one variable, you can solve for x directly.
17x+\frac{432}{127}=37
Multiply 3 times \frac{144}{127}.
17x=\frac{4267}{127}
Subtract \frac{432}{127} from both sides of the equation.
x=\frac{251}{127}
Divide both sides by 17.
x=\frac{251}{127},y=\frac{144}{127}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}