Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

100x-y=0
Consider the first equation. Subtract y from both sides.
20x-160=y
Consider the second equation. Use the distributive property to multiply 20 by x-8.
20x-160-y=0
Subtract y from both sides.
20x-y=160
Add 160 to both sides. Anything plus zero gives itself.
100x-y=0,20x-y=160
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
100x-y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
100x=y
Add y to both sides of the equation.
x=\frac{1}{100}y
Divide both sides by 100.
20\times \frac{1}{100}y-y=160
Substitute \frac{y}{100} for x in the other equation, 20x-y=160.
\frac{1}{5}y-y=160
Multiply 20 times \frac{y}{100}.
-\frac{4}{5}y=160
Add \frac{y}{5} to -y.
y=-200
Divide both sides of the equation by -\frac{4}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1}{100}\left(-200\right)
Substitute -200 for y in x=\frac{1}{100}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2
Multiply \frac{1}{100} times -200.
x=-2,y=-200
The system is now solved.
100x-y=0
Consider the first equation. Subtract y from both sides.
20x-160=y
Consider the second equation. Use the distributive property to multiply 20 by x-8.
20x-160-y=0
Subtract y from both sides.
20x-y=160
Add 160 to both sides. Anything plus zero gives itself.
100x-y=0,20x-y=160
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}100&-1\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\160\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}100&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}100&-1\\20&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}100&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}0\\160\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}100&-1\\20&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}100&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}0\\160\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}100&-1\\20&-1\end{matrix}\right))\left(\begin{matrix}0\\160\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{100\left(-1\right)-\left(-20\right)}&-\frac{-1}{100\left(-1\right)-\left(-20\right)}\\-\frac{20}{100\left(-1\right)-\left(-20\right)}&\frac{100}{100\left(-1\right)-\left(-20\right)}\end{matrix}\right)\left(\begin{matrix}0\\160\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{80}&-\frac{1}{80}\\\frac{1}{4}&-\frac{5}{4}\end{matrix}\right)\left(\begin{matrix}0\\160\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}\times 160\\-\frac{5}{4}\times 160\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-200\end{matrix}\right)
Do the arithmetic.
x=-2,y=-200
Extract the matrix elements x and y.
100x-y=0
Consider the first equation. Subtract y from both sides.
20x-160=y
Consider the second equation. Use the distributive property to multiply 20 by x-8.
20x-160-y=0
Subtract y from both sides.
20x-y=160
Add 160 to both sides. Anything plus zero gives itself.
100x-y=0,20x-y=160
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
100x-20x-y+y=-160
Subtract 20x-y=160 from 100x-y=0 by subtracting like terms on each side of the equal sign.
100x-20x=-160
Add -y to y. Terms -y and y cancel out, leaving an equation with only one variable that can be solved.
80x=-160
Add 100x to -20x.
x=-2
Divide both sides by 80.
20\left(-2\right)-y=160
Substitute -2 for x in 20x-y=160. Because the resulting equation contains only one variable, you can solve for y directly.
-40-y=160
Multiply 20 times -2.
-y=200
Add 40 to both sides of the equation.
y=-200
Divide both sides by -1.
x=-2,y=-200
The system is now solved.