Solve for x_1, x_2
x_{1}=16-4x_{4}
x_{2}=28-12x_{4}
Share
Copied to clipboard
20x_{4}+5x_{1}=80
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
5x_{1}=80-20x_{4}
Subtract 20x_{4} from both sides.
15x_{1}-5x_{2}=100
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
5x_{1}=80-20x_{4},15x_{1}-5x_{2}=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x_{1}=80-20x_{4}
Pick one of the two equations which is more simple to solve for x_{1} by isolating x_{1} on the left hand side of the equal sign.
x_{1}=16-4x_{4}
Divide both sides by 5.
15\left(16-4x_{4}\right)-5x_{2}=100
Substitute 16-4x_{4} for x_{1} in the other equation, 15x_{1}-5x_{2}=100.
240-60x_{4}-5x_{2}=100
Multiply 15 times 16-4x_{4}.
-5x_{2}=60x_{4}-140
Subtract 240-60x_{4} from both sides of the equation.
x_{2}=28-12x_{4}
Divide both sides by -5.
x_{1}=16-4x_{4},x_{2}=28-12x_{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}