Solve for x, y
x=933
y=-1002
Graph
Share
Copied to clipboard
10x+9y=312,17x+15y=831
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10x+9y=312
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
10x=-9y+312
Subtract 9y from both sides of the equation.
x=\frac{1}{10}\left(-9y+312\right)
Divide both sides by 10.
x=-\frac{9}{10}y+\frac{156}{5}
Multiply \frac{1}{10} times -9y+312.
17\left(-\frac{9}{10}y+\frac{156}{5}\right)+15y=831
Substitute -\frac{9y}{10}+\frac{156}{5} for x in the other equation, 17x+15y=831.
-\frac{153}{10}y+\frac{2652}{5}+15y=831
Multiply 17 times -\frac{9y}{10}+\frac{156}{5}.
-\frac{3}{10}y+\frac{2652}{5}=831
Add -\frac{153y}{10} to 15y.
-\frac{3}{10}y=\frac{1503}{5}
Subtract \frac{2652}{5} from both sides of the equation.
y=-1002
Divide both sides of the equation by -\frac{3}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{9}{10}\left(-1002\right)+\frac{156}{5}
Substitute -1002 for y in x=-\frac{9}{10}y+\frac{156}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{4509+156}{5}
Multiply -\frac{9}{10} times -1002.
x=933
Add \frac{156}{5} to \frac{4509}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=933,y=-1002
The system is now solved.
10x+9y=312,17x+15y=831
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&9\\17&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}312\\831\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&9\\17&15\end{matrix}\right))\left(\begin{matrix}10&9\\17&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&9\\17&15\end{matrix}\right))\left(\begin{matrix}312\\831\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&9\\17&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&9\\17&15\end{matrix}\right))\left(\begin{matrix}312\\831\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&9\\17&15\end{matrix}\right))\left(\begin{matrix}312\\831\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{10\times 15-9\times 17}&-\frac{9}{10\times 15-9\times 17}\\-\frac{17}{10\times 15-9\times 17}&\frac{10}{10\times 15-9\times 17}\end{matrix}\right)\left(\begin{matrix}312\\831\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&3\\\frac{17}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}312\\831\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 312+3\times 831\\\frac{17}{3}\times 312-\frac{10}{3}\times 831\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}933\\-1002\end{matrix}\right)
Do the arithmetic.
x=933,y=-1002
Extract the matrix elements x and y.
10x+9y=312,17x+15y=831
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
17\times 10x+17\times 9y=17\times 312,10\times 17x+10\times 15y=10\times 831
To make 10x and 17x equal, multiply all terms on each side of the first equation by 17 and all terms on each side of the second by 10.
170x+153y=5304,170x+150y=8310
Simplify.
170x-170x+153y-150y=5304-8310
Subtract 170x+150y=8310 from 170x+153y=5304 by subtracting like terms on each side of the equal sign.
153y-150y=5304-8310
Add 170x to -170x. Terms 170x and -170x cancel out, leaving an equation with only one variable that can be solved.
3y=5304-8310
Add 153y to -150y.
3y=-3006
Add 5304 to -8310.
y=-1002
Divide both sides by 3.
17x+15\left(-1002\right)=831
Substitute -1002 for y in 17x+15y=831. Because the resulting equation contains only one variable, you can solve for x directly.
17x-15030=831
Multiply 15 times -1002.
17x=15861
Add 15030 to both sides of the equation.
x=933
Divide both sides by 17.
x=933,y=-1002
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}