Solve for u, a
u=7
a=16
Share
Copied to clipboard
10u+8a=198,9u+4a=127
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10u+8a=198
Choose one of the equations and solve it for u by isolating u on the left hand side of the equal sign.
10u=-8a+198
Subtract 8a from both sides of the equation.
u=\frac{1}{10}\left(-8a+198\right)
Divide both sides by 10.
u=-\frac{4}{5}a+\frac{99}{5}
Multiply \frac{1}{10} times -8a+198.
9\left(-\frac{4}{5}a+\frac{99}{5}\right)+4a=127
Substitute \frac{-4a+99}{5} for u in the other equation, 9u+4a=127.
-\frac{36}{5}a+\frac{891}{5}+4a=127
Multiply 9 times \frac{-4a+99}{5}.
-\frac{16}{5}a+\frac{891}{5}=127
Add -\frac{36a}{5} to 4a.
-\frac{16}{5}a=-\frac{256}{5}
Subtract \frac{891}{5} from both sides of the equation.
a=16
Divide both sides of the equation by -\frac{16}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
u=-\frac{4}{5}\times 16+\frac{99}{5}
Substitute 16 for a in u=-\frac{4}{5}a+\frac{99}{5}. Because the resulting equation contains only one variable, you can solve for u directly.
u=\frac{-64+99}{5}
Multiply -\frac{4}{5} times 16.
u=7
Add \frac{99}{5} to -\frac{64}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
u=7,a=16
The system is now solved.
10u+8a=198,9u+4a=127
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&8\\9&4\end{matrix}\right)\left(\begin{matrix}u\\a\end{matrix}\right)=\left(\begin{matrix}198\\127\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&8\\9&4\end{matrix}\right))\left(\begin{matrix}10&8\\9&4\end{matrix}\right)\left(\begin{matrix}u\\a\end{matrix}\right)=inverse(\left(\begin{matrix}10&8\\9&4\end{matrix}\right))\left(\begin{matrix}198\\127\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&8\\9&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\a\end{matrix}\right)=inverse(\left(\begin{matrix}10&8\\9&4\end{matrix}\right))\left(\begin{matrix}198\\127\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}u\\a\end{matrix}\right)=inverse(\left(\begin{matrix}10&8\\9&4\end{matrix}\right))\left(\begin{matrix}198\\127\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}u\\a\end{matrix}\right)=\left(\begin{matrix}\frac{4}{10\times 4-8\times 9}&-\frac{8}{10\times 4-8\times 9}\\-\frac{9}{10\times 4-8\times 9}&\frac{10}{10\times 4-8\times 9}\end{matrix}\right)\left(\begin{matrix}198\\127\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}u\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{1}{4}\\\frac{9}{32}&-\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}198\\127\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}u\\a\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 198+\frac{1}{4}\times 127\\\frac{9}{32}\times 198-\frac{5}{16}\times 127\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}u\\a\end{matrix}\right)=\left(\begin{matrix}7\\16\end{matrix}\right)
Do the arithmetic.
u=7,a=16
Extract the matrix elements u and a.
10u+8a=198,9u+4a=127
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 10u+9\times 8a=9\times 198,10\times 9u+10\times 4a=10\times 127
To make 10u and 9u equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 10.
90u+72a=1782,90u+40a=1270
Simplify.
90u-90u+72a-40a=1782-1270
Subtract 90u+40a=1270 from 90u+72a=1782 by subtracting like terms on each side of the equal sign.
72a-40a=1782-1270
Add 90u to -90u. Terms 90u and -90u cancel out, leaving an equation with only one variable that can be solved.
32a=1782-1270
Add 72a to -40a.
32a=512
Add 1782 to -1270.
a=16
Divide both sides by 32.
9u+4\times 16=127
Substitute 16 for a in 9u+4a=127. Because the resulting equation contains only one variable, you can solve for u directly.
9u+64=127
Multiply 4 times 16.
9u=63
Subtract 64 from both sides of the equation.
u=7
Divide both sides by 9.
u=7,a=16
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}