Solve for F, C, S
F=25
C=-105
S=335
Share
Copied to clipboard
25+F=50
Consider the third equation. Swap sides so that all variable terms are on the left hand side.
F=50-25
Subtract 25 from both sides.
F=25
Subtract 25 from 50 to get 25.
0\times 0=4\times 25+5+C
Consider the first equation. Insert the known values of variables into the equation.
0=4\times 25+5+C
Multiply 0 and 0 to get 0.
0=100+5+C
Multiply 4 and 25 to get 100.
0=105+C
Add 100 and 5 to get 105.
105+C=0
Swap sides so that all variable terms are on the left hand side.
C=-105
Subtract 105 from both sides. Anything subtracted from zero gives its negation.
70=3\left(-105\right)+2\times 25+S
Consider the second equation. Insert the known values of variables into the equation.
70=-315+50+S
Do the multiplications.
70=-265+S
Add -315 and 50 to get -265.
-265+S=70
Swap sides so that all variable terms are on the left hand side.
S=70+265
Add 265 to both sides.
S=335
Add 70 and 265 to get 335.
F=25 C=-105 S=335
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}