Solve for x, y
x=-13.2
y=1.4
Graph
Share
Copied to clipboard
y=\frac{3.5}{2.5}
Consider the second equation. Divide both sides by 2.5.
y=\frac{35}{25}
Expand \frac{3.5}{2.5} by multiplying both numerator and the denominator by 10.
y=\frac{7}{5}
Reduce the fraction \frac{35}{25} to lowest terms by extracting and canceling out 5.
0.5x+4\times \frac{7}{5}=-1
Consider the first equation. Insert the known values of variables into the equation.
0.5x+\frac{28}{5}=-1
Multiply 4 and \frac{7}{5} to get \frac{28}{5}.
0.5x=-1-\frac{28}{5}
Subtract \frac{28}{5} from both sides.
0.5x=-\frac{33}{5}
Subtract \frac{28}{5} from -1 to get -\frac{33}{5}.
x=\frac{-\frac{33}{5}}{0.5}
Divide both sides by 0.5.
x=\frac{-33}{5\times 0.5}
Express \frac{-\frac{33}{5}}{0.5} as a single fraction.
x=\frac{-33}{2.5}
Multiply 5 and 0.5 to get 2.5.
x=\frac{-330}{25}
Expand \frac{-33}{2.5} by multiplying both numerator and the denominator by 10.
x=-\frac{66}{5}
Reduce the fraction \frac{-330}{25} to lowest terms by extracting and canceling out 5.
x=-\frac{66}{5} y=\frac{7}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}