Skip to main content
Solve for k, b
Tick mark Image

Similar Problems from Web Search

Share

30k+b=0.15
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
60k+b=0.12
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=0.15,60k+b=0.12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30k+b=0.15
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
30k=-b+0.15
Subtract b from both sides of the equation.
k=\frac{1}{30}\left(-b+0.15\right)
Divide both sides by 30.
k=-\frac{1}{30}b+\frac{1}{200}
Multiply \frac{1}{30} times -b+0.15.
60\left(-\frac{1}{30}b+\frac{1}{200}\right)+b=0.12
Substitute -\frac{b}{30}+\frac{1}{200} for k in the other equation, 60k+b=0.12.
-2b+\frac{3}{10}+b=0.12
Multiply 60 times -\frac{b}{30}+\frac{1}{200}.
-b+\frac{3}{10}=0.12
Add -2b to b.
-b=-\frac{9}{50}
Subtract \frac{3}{10} from both sides of the equation.
b=\frac{9}{50}
Divide both sides by -1.
k=-\frac{1}{30}\times \frac{9}{50}+\frac{1}{200}
Substitute \frac{9}{50} for b in k=-\frac{1}{30}b+\frac{1}{200}. Because the resulting equation contains only one variable, you can solve for k directly.
k=-\frac{3}{500}+\frac{1}{200}
Multiply -\frac{1}{30} times \frac{9}{50} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
k=-\frac{1}{1000}
Add \frac{1}{200} to -\frac{3}{500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=-\frac{1}{1000},b=\frac{9}{50}
The system is now solved.
30k+b=0.15
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
60k+b=0.12
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=0.15,60k+b=0.12
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}30&1\\60&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}0.15\\0.12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}30&1\\60&1\end{matrix}\right))\left(\begin{matrix}30&1\\60&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\60&1\end{matrix}\right))\left(\begin{matrix}0.15\\0.12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}30&1\\60&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\60&1\end{matrix}\right))\left(\begin{matrix}0.15\\0.12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\60&1\end{matrix}\right))\left(\begin{matrix}0.15\\0.12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30-60}&-\frac{1}{30-60}\\-\frac{60}{30-60}&\frac{30}{30-60}\end{matrix}\right)\left(\begin{matrix}0.15\\0.12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}&\frac{1}{30}\\2&-1\end{matrix}\right)\left(\begin{matrix}0.15\\0.12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}\times 0.15+\frac{1}{30}\times 0.12\\2\times 0.15-0.12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{1000}\\0.18\end{matrix}\right)
Do the arithmetic.
k=-\frac{1}{1000},b=0.18
Extract the matrix elements k and b.
30k+b=0.15
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
60k+b=0.12
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=0.15,60k+b=0.12
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30k-60k+b-b=0.15-0.12
Subtract 60k+b=0.12 from 30k+b=0.15 by subtracting like terms on each side of the equal sign.
30k-60k=0.15-0.12
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-30k=0.15-0.12
Add 30k to -60k.
-30k=0.03
Add 0.15 to -0.12 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=-\frac{1}{1000}
Divide both sides by -30.
60\left(-\frac{1}{1000}\right)+b=0.12
Substitute -\frac{1}{1000} for k in 60k+b=0.12. Because the resulting equation contains only one variable, you can solve for b directly.
-\frac{3}{50}+b=0.12
Multiply 60 times -\frac{1}{1000}.
b=\frac{9}{50}
Add \frac{3}{50} to both sides of the equation.
k=-\frac{1}{1000},b=\frac{9}{50}
The system is now solved.