Solve for x, y
x=100
y=50
Graph
Share
Copied to clipboard
0.04x+0.02y=5,0.5\left(x-2\right)-0.4y=29
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.04x+0.02y=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.04x=-0.02y+5
Subtract \frac{y}{50} from both sides of the equation.
x=25\left(-0.02y+5\right)
Multiply both sides by 25.
x=-0.5y+125
Multiply 25 times -\frac{y}{50}+5.
0.5\left(-0.5y+125-2\right)-0.4y=29
Substitute -\frac{y}{2}+125 for x in the other equation, 0.5\left(x-2\right)-0.4y=29.
0.5\left(-0.5y+123\right)-0.4y=29
Add 125 to -2.
-0.25y+61.5-0.4y=29
Multiply 0.5 times -\frac{y}{2}+123.
-0.65y+61.5=29
Add -\frac{y}{4} to -\frac{2y}{5}.
-0.65y=-32.5
Subtract 61.5 from both sides of the equation.
y=50
Divide both sides of the equation by -0.65, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-0.5\times 50+125
Substitute 50 for y in x=-0.5y+125. Because the resulting equation contains only one variable, you can solve for x directly.
x=-25+125
Multiply -0.5 times 50.
x=100
Add 125 to -25.
x=100,y=50
The system is now solved.
0.04x+0.02y=5,0.5\left(x-2\right)-0.4y=29
Put the equations in standard form and then use matrices to solve the system of equations.
0.5\left(x-2\right)-0.4y=29
Simplify the second equation to put it in standard form.
0.5x-1-0.4y=29
Multiply 0.5 times x-2.
0.5x-0.4y=30
Add 1 to both sides of the equation.
\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\30\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.4}{0.04\left(-0.4\right)-0.02\times 0.5}&-\frac{0.02}{0.04\left(-0.4\right)-0.02\times 0.5}\\-\frac{0.5}{0.04\left(-0.4\right)-0.02\times 0.5}&\frac{0.04}{0.04\left(-0.4\right)-0.02\times 0.5}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{13}&\frac{10}{13}\\\frac{250}{13}&-\frac{20}{13}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{13}\times 5+\frac{10}{13}\times 30\\\frac{250}{13}\times 5-\frac{20}{13}\times 30\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\50\end{matrix}\right)
Do the arithmetic.
x=100,y=50
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}