Solve for I_2, I_1
I_{2}=-\frac{3}{152}\approx -0.019736842
I_{1}=-\frac{3}{16}=-0.1875
Share
Copied to clipboard
24+70I_{1}+58I_{1}=0
Consider the second equation. Do the multiplications.
24+128I_{1}=0
Combine 70I_{1} and 58I_{1} to get 128I_{1}.
128I_{1}=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
I_{1}=\frac{-24}{128}
Divide both sides by 128.
I_{1}=-\frac{3}{16}
Reduce the fraction \frac{-24}{128} to lowest terms by extracting and canceling out 8.
-6+57\times 4I_{2}-28\times 2\left(-\frac{3}{16}\right)=0
Consider the first equation. Insert the known values of variables into the equation.
-6+228I_{2}-28\times 2\left(-\frac{3}{16}\right)=0
Multiply 57 and 4 to get 228.
-6+228I_{2}-56\left(-\frac{3}{16}\right)=0
Multiply 28 and 2 to get 56.
-6+228I_{2}-\left(-\frac{21}{2}\right)=0
Multiply 56 and -\frac{3}{16} to get -\frac{21}{2}.
-6+228I_{2}+\frac{21}{2}=0
The opposite of -\frac{21}{2} is \frac{21}{2}.
\frac{9}{2}+228I_{2}=0
Add -6 and \frac{21}{2} to get \frac{9}{2}.
228I_{2}=-\frac{9}{2}
Subtract \frac{9}{2} from both sides. Anything subtracted from zero gives its negation.
I_{2}=\frac{-\frac{9}{2}}{228}
Divide both sides by 228.
I_{2}=\frac{-9}{2\times 228}
Express \frac{-\frac{9}{2}}{228} as a single fraction.
I_{2}=\frac{-9}{456}
Multiply 2 and 228 to get 456.
I_{2}=-\frac{3}{152}
Reduce the fraction \frac{-9}{456} to lowest terms by extracting and canceling out 3.
I_{2}=-\frac{3}{152} I_{1}=-\frac{3}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}