\left. \begin{array} { l } { - 5,4 - ( - 6 ) } \\ { - \frac { 3 } { 2 } - 1 \frac { 1 } { 2 } } \end{array} \right.
Evaluate
-2,4
Factor
-2,4
Share
Copied to clipboard
-5,4+6-\frac{3}{2}-\frac{1\times 2+1}{2}
The opposite of -6 is 6.
0,6-\frac{3}{2}-\frac{1\times 2+1}{2}
Add -5,4 and 6 to get 0,6.
\frac{3}{5}-\frac{3}{2}-\frac{1\times 2+1}{2}
Convert decimal number 0,6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{10}-\frac{15}{10}-\frac{1\times 2+1}{2}
Least common multiple of 5 and 2 is 10. Convert \frac{3}{5} and \frac{3}{2} to fractions with denominator 10.
\frac{6-15}{10}-\frac{1\times 2+1}{2}
Since \frac{6}{10} and \frac{15}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{9}{10}-\frac{1\times 2+1}{2}
Subtract 15 from 6 to get -9.
-\frac{9}{10}-\frac{2+1}{2}
Multiply 1 and 2 to get 2.
-\frac{9}{10}-\frac{3}{2}
Add 2 and 1 to get 3.
-\frac{9}{10}-\frac{15}{10}
Least common multiple of 10 and 2 is 10. Convert -\frac{9}{10} and \frac{3}{2} to fractions with denominator 10.
\frac{-9-15}{10}
Since -\frac{9}{10} and \frac{15}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{-24}{10}
Subtract 15 from -9 to get -24.
-\frac{12}{5}
Reduce the fraction \frac{-24}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}