Solve for y, x
x = -\frac{110}{3} = -36\frac{2}{3} \approx -36.666666667
y=-67
Graph
Share
Copied to clipboard
-24-2y=-3x
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
-24-2y+3x=0
Add 3x to both sides.
-2y+3x=24
Add 24 to both sides. Anything plus zero gives itself.
5y=12x+15\left(3\times 2+1\right)
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 6,5,2.
5y=12x+15\left(6+1\right)
Multiply 3 and 2 to get 6.
5y=12x+15\times 7
Add 6 and 1 to get 7.
5y=12x+105
Multiply 15 and 7 to get 105.
5y-12x=105
Subtract 12x from both sides.
-2y+3x=24,5y-12x=105
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-2y+3x=24
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
-2y=-3x+24
Subtract 3x from both sides of the equation.
y=-\frac{1}{2}\left(-3x+24\right)
Divide both sides by -2.
y=\frac{3}{2}x-12
Multiply -\frac{1}{2} times -3x+24.
5\left(\frac{3}{2}x-12\right)-12x=105
Substitute \frac{3x}{2}-12 for y in the other equation, 5y-12x=105.
\frac{15}{2}x-60-12x=105
Multiply 5 times \frac{3x}{2}-12.
-\frac{9}{2}x-60=105
Add \frac{15x}{2} to -12x.
-\frac{9}{2}x=165
Add 60 to both sides of the equation.
x=-\frac{110}{3}
Divide both sides of the equation by -\frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{3}{2}\left(-\frac{110}{3}\right)-12
Substitute -\frac{110}{3} for x in y=\frac{3}{2}x-12. Because the resulting equation contains only one variable, you can solve for y directly.
y=-55-12
Multiply \frac{3}{2} times -\frac{110}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=-67
Add -12 to -55.
y=-67,x=-\frac{110}{3}
The system is now solved.
-24-2y=-3x
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
-24-2y+3x=0
Add 3x to both sides.
-2y+3x=24
Add 24 to both sides. Anything plus zero gives itself.
5y=12x+15\left(3\times 2+1\right)
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 6,5,2.
5y=12x+15\left(6+1\right)
Multiply 3 and 2 to get 6.
5y=12x+15\times 7
Add 6 and 1 to get 7.
5y=12x+105
Multiply 15 and 7 to get 105.
5y-12x=105
Subtract 12x from both sides.
-2y+3x=24,5y-12x=105
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-2&3\\5&-12\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}24\\105\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-2&3\\5&-12\end{matrix}\right))\left(\begin{matrix}-2&3\\5&-12\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\5&-12\end{matrix}\right))\left(\begin{matrix}24\\105\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-2&3\\5&-12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\5&-12\end{matrix}\right))\left(\begin{matrix}24\\105\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\5&-12\end{matrix}\right))\left(\begin{matrix}24\\105\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{-2\left(-12\right)-3\times 5}&-\frac{3}{-2\left(-12\right)-3\times 5}\\-\frac{5}{-2\left(-12\right)-3\times 5}&-\frac{2}{-2\left(-12\right)-3\times 5}\end{matrix}\right)\left(\begin{matrix}24\\105\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&-\frac{1}{3}\\-\frac{5}{9}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}24\\105\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}\times 24-\frac{1}{3}\times 105\\-\frac{5}{9}\times 24-\frac{2}{9}\times 105\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-67\\-\frac{110}{3}\end{matrix}\right)
Do the arithmetic.
y=-67,x=-\frac{110}{3}
Extract the matrix elements y and x.
-24-2y=-3x
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 3,2.
-24-2y+3x=0
Add 3x to both sides.
-2y+3x=24
Add 24 to both sides. Anything plus zero gives itself.
5y=12x+15\left(3\times 2+1\right)
Consider the second equation. Multiply both sides of the equation by 30, the least common multiple of 6,5,2.
5y=12x+15\left(6+1\right)
Multiply 3 and 2 to get 6.
5y=12x+15\times 7
Add 6 and 1 to get 7.
5y=12x+105
Multiply 15 and 7 to get 105.
5y-12x=105
Subtract 12x from both sides.
-2y+3x=24,5y-12x=105
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\left(-2\right)y+5\times 3x=5\times 24,-2\times 5y-2\left(-12\right)x=-2\times 105
To make -2y and 5y equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by -2.
-10y+15x=120,-10y+24x=-210
Simplify.
-10y+10y+15x-24x=120+210
Subtract -10y+24x=-210 from -10y+15x=120 by subtracting like terms on each side of the equal sign.
15x-24x=120+210
Add -10y to 10y. Terms -10y and 10y cancel out, leaving an equation with only one variable that can be solved.
-9x=120+210
Add 15x to -24x.
-9x=330
Add 120 to 210.
x=-\frac{110}{3}
Divide both sides by -9.
5y-12\left(-\frac{110}{3}\right)=105
Substitute -\frac{110}{3} for x in 5y-12x=105. Because the resulting equation contains only one variable, you can solve for y directly.
5y+440=105
Multiply -12 times -\frac{110}{3}.
5y=-335
Subtract 440 from both sides of the equation.
y=-67
Divide both sides by 5.
y=-67,x=-\frac{110}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}