Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

a+2-3b+6=0,4\left(a+2\right)-3b-36=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a+2-3b+6=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a-3b+8=0
Add 2 to 6.
a-3b=-8
Subtract 8 from both sides of the equation.
a=3b-8
Add 3b to both sides of the equation.
4\left(3b-8+2\right)-3b-36=9
Substitute 3b-8 for a in the other equation, 4\left(a+2\right)-3b-36=9.
4\left(3b-6\right)-3b-36=9
Add -8 to 2.
12b-24-3b-36=9
Multiply 4 times -6+3b.
9b-24-36=9
Add 12b to -3b.
9b-60=9
Add -24 to -36.
9b=69
Add 60 to both sides of the equation.
b=\frac{23}{3}
Divide both sides by 9.
a=3\times \frac{23}{3}-8
Substitute \frac{23}{3} for b in a=3b-8. Because the resulting equation contains only one variable, you can solve for a directly.
a=23-8
Multiply 3 times \frac{23}{3}.
a=15
Add -8 to 23.
a=15,b=\frac{23}{3}
The system is now solved.
a+2-3b+6=0,4\left(a+2\right)-3b-36=9
Put the equations in standard form and then use matrices to solve the system of equations.
a+2-3b+6=0
Simplify the first equation to put it in standard form.
a-3b+8=0
Add 2 to 6.
a-3b=-8
Subtract 8 from both sides of the equation.
4\left(a+2\right)-3b-36=9
Simplify the second equation to put it in standard form.
4a+8-3b-36=9
Multiply 4 times a+2.
4a-3b-28=9
Add 8 to -36.
4a-3b=37
Add 28 to both sides of the equation.
\left(\begin{matrix}1&-3\\4&-3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-8\\37\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-3\\4&-3\end{matrix}\right))\left(\begin{matrix}1&-3\\4&-3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&-3\end{matrix}\right))\left(\begin{matrix}-8\\37\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-3\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&-3\end{matrix}\right))\left(\begin{matrix}-8\\37\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&-3\end{matrix}\right))\left(\begin{matrix}-8\\37\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-3\times 4\right)}&-\frac{-3}{-3-\left(-3\times 4\right)}\\-\frac{4}{-3-\left(-3\times 4\right)}&\frac{1}{-3-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-8\\37\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\-\frac{4}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-8\\37\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-8\right)+\frac{1}{3}\times 37\\-\frac{4}{9}\left(-8\right)+\frac{1}{9}\times 37\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}15\\\frac{23}{3}\end{matrix}\right)
Do the arithmetic.
a=15,b=\frac{23}{3}
Extract the matrix elements a and b.