\left. \begin{array} { l } { - 2 ( \frac { 5 } { 4 } + 1 ) + 6 ( \frac { 5 } { 4 } ) - 3 = - 4 ( \frac { 5 } { 4 } ) + 5 } \\ { - 2 ( \frac { 5 + 4 } { 4 } ) + \frac { 30 } { 4 } - 3 = - \frac { 20 } { 4 } + 5 } \end{array} \right.
Verify
true
Share
Copied to clipboard
-2\left(\frac{5}{4}+\frac{4}{4}\right)+6\times \frac{5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Convert 1 to fraction \frac{4}{4}.
-2\times \frac{5+4}{4}+6\times \frac{5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Since \frac{5}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
-2\times \frac{9}{4}+6\times \frac{5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Add 5 and 4 to get 9.
\frac{-2\times 9}{4}+6\times \frac{5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Express -2\times \frac{9}{4} as a single fraction.
\frac{-18}{4}+6\times \frac{5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Multiply -2 and 9 to get -18.
-\frac{9}{2}+6\times \frac{5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
-\frac{9}{2}+\frac{6\times 5}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Express 6\times \frac{5}{4} as a single fraction.
-\frac{9}{2}+\frac{30}{4}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Multiply 6 and 5 to get 30.
-\frac{9}{2}+\frac{15}{2}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\frac{-9+15}{2}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Since -\frac{9}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
\frac{6}{2}-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Add -9 and 15 to get 6.
3-3=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Divide 6 by 2 to get 3.
0=-4\times \frac{5}{4}+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Subtract 3 from 3 to get 0.
0=-5+5\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Multiply -4 times \frac{5}{4}.
0=0\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Add -5 and 5 to get 0.
\text{true}\text{ and }-2\times \frac{5+4}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Compare 0 and 0.
\text{true}\text{ and }-2\times \frac{9}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Add 5 and 4 to get 9.
\text{true}\text{ and }\frac{-2\times 9}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Express -2\times \frac{9}{4} as a single fraction.
\text{true}\text{ and }\frac{-18}{4}+\frac{30}{4}-3=-\frac{20}{4}+5
Multiply -2 and 9 to get -18.
\text{true}\text{ and }-\frac{9}{2}+\frac{30}{4}-3=-\frac{20}{4}+5
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{9}{2}+\frac{15}{2}-3=-\frac{20}{4}+5
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }\frac{-9+15}{2}-3=-\frac{20}{4}+5
Since -\frac{9}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
\text{true}\text{ and }\frac{6}{2}-3=-\frac{20}{4}+5
Add -9 and 15 to get 6.
\text{true}\text{ and }3-3=-\frac{20}{4}+5
Divide 6 by 2 to get 3.
\text{true}\text{ and }0=-\frac{20}{4}+5
Subtract 3 from 3 to get 0.
\text{true}\text{ and }0=-5+5
Divide 20 by 4 to get 5.
\text{true}\text{ and }0=0
Add -5 and 5 to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}