Evaluate
-0.125
Factor
-0.125
Share
Copied to clipboard
-0.025+\frac{1}{2}\left(-0.2\right)
Multiply -0.25 and 0.1 to get -0.025.
-0.025+\frac{1}{2}\left(-\frac{1}{5}\right)
Convert decimal number -0.2 to fraction -\frac{2}{10}. Reduce the fraction -\frac{2}{10} to lowest terms by extracting and canceling out 2.
-0.025+\frac{1\left(-1\right)}{2\times 5}
Multiply \frac{1}{2} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
-0.025+\frac{-1}{10}
Do the multiplications in the fraction \frac{1\left(-1\right)}{2\times 5}.
-0.025-\frac{1}{10}
Fraction \frac{-1}{10} can be rewritten as -\frac{1}{10} by extracting the negative sign.
-\frac{1}{40}-\frac{1}{10}
Convert decimal number -0.025 to fraction -\frac{25}{1000}. Reduce the fraction -\frac{25}{1000} to lowest terms by extracting and canceling out 25.
-\frac{1}{40}-\frac{4}{40}
Least common multiple of 40 and 10 is 40. Convert -\frac{1}{40} and \frac{1}{10} to fractions with denominator 40.
\frac{-1-4}{40}
Since -\frac{1}{40} and \frac{4}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{-5}{40}
Subtract 4 from -1 to get -5.
-\frac{1}{8}
Reduce the fraction \frac{-5}{40} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}