\left. \begin{array} { l } { ( x - z ) ( x + z + 6 y ) } \\ { ( x - z ) ( x + z - 6 y ) } \\ { ( x + z ) ( x - z + 6 y ) } \\ { ( x + z ) ( x - z - 6 y ) } \end{array} \right.
Least Common Multiple
-\left(x^{2}-z^{2}\right)\left(-\left(-6y-z\right)^{2}+x^{2}\right)\left(-\left(6y-z\right)^{2}+x^{2}\right)
Evaluate
\left(x-z\right)\left(x+6y+z\right),\ \left(x-z\right)\left(x-6y+z\right),\ \left(x+z\right)\left(x+6y-z\right),\ \left(x+z\right)\left(x-6y-z\right)
Share
Copied to clipboard
\left(z-x\right)\left(x+z\right)\left(x-6y-z\right)\left(x-6y+z\right)\left(x+6y-z\right)\left(x+6y+z\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
-x^{6}-1296x^{2}y^{4}-3x^{2}z^{4}+72y^{2}x^{4}-72y^{2}z^{4}+z^{6}+3z^{2}x^{4}+1296z^{2}y^{4}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}