Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x\left(x^{2}-ix-\left(1+i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
Use the distributive property to multiply x-1+i by x^{2}-ix-\left(1+i\right) and combine like terms.
x\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
Multiply -1 and 1+i to get -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
Use the distributive property to multiply x by x^{2}-ix+\left(-1-i\right).
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-2-2i\right)
Multiply -1 and 1+i to get -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x+2+\left(-2-2i\right)
Use the distributive property to multiply -1+i by x^{2}-ix+\left(-1-i\right).
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x-2i
Do the additions.
x^{3}-x^{2}+\left(-1-i\right)x+\left(1+i\right)x-2i
Combine -ix^{2} and \left(-1+i\right)x^{2} to get -x^{2}.
x^{3}-x^{2}-2i
Combine \left(-1-i\right)x and \left(1+i\right)x to get 0.
x\left(x^{2}-ix-\left(1+i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
Use the distributive property to multiply x-1+i by x^{2}-ix-\left(1+i\right) and combine like terms.
x\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
Multiply -1 and 1+i to get -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
Use the distributive property to multiply x by x^{2}-ix+\left(-1-i\right).
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-2-2i\right)
Multiply -1 and 1+i to get -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x+2+\left(-2-2i\right)
Use the distributive property to multiply -1+i by x^{2}-ix+\left(-1-i\right).
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x-2i
Do the additions.
x^{3}-x^{2}+\left(-1-i\right)x+\left(1+i\right)x-2i
Combine -ix^{2} and \left(-1+i\right)x^{2} to get -x^{2}.
x^{3}-x^{2}-2i
Combine \left(-1-i\right)x and \left(1+i\right)x to get 0.