Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

1^{2}-\left(2x\right)^{2}-\left(x+2\right)\left(x-3\right)
Consider \left(2x+1\right)\left(1-2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1-\left(2x\right)^{2}-\left(x+2\right)\left(x-3\right)
Calculate 1 to the power of 2 and get 1.
1-2^{2}x^{2}-\left(x+2\right)\left(x-3\right)
Expand \left(2x\right)^{2}.
1-4x^{2}-\left(x+2\right)\left(x-3\right)
Calculate 2 to the power of 2 and get 4.
1-4x^{2}-\left(x^{2}-3x+2x-6\right)
Apply the distributive property by multiplying each term of x+2 by each term of x-3.
1-4x^{2}-\left(x^{2}-x-6\right)
Combine -3x and 2x to get -x.
1-4x^{2}-x^{2}-\left(-x\right)-\left(-6\right)
To find the opposite of x^{2}-x-6, find the opposite of each term.
1-4x^{2}-x^{2}+x-\left(-6\right)
The opposite of -x is x.
1-4x^{2}-x^{2}+x+6
The opposite of -6 is 6.
1-5x^{2}+x+6
Combine -4x^{2} and -x^{2} to get -5x^{2}.
7-5x^{2}+x
Add 1 and 6 to get 7.
1^{2}-\left(2x\right)^{2}-\left(x+2\right)\left(x-3\right)
Consider \left(2x+1\right)\left(1-2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1-\left(2x\right)^{2}-\left(x+2\right)\left(x-3\right)
Calculate 1 to the power of 2 and get 1.
1-2^{2}x^{2}-\left(x+2\right)\left(x-3\right)
Expand \left(2x\right)^{2}.
1-4x^{2}-\left(x+2\right)\left(x-3\right)
Calculate 2 to the power of 2 and get 4.
1-4x^{2}-\left(x^{2}-3x+2x-6\right)
Apply the distributive property by multiplying each term of x+2 by each term of x-3.
1-4x^{2}-\left(x^{2}-x-6\right)
Combine -3x and 2x to get -x.
1-4x^{2}-x^{2}-\left(-x\right)-\left(-6\right)
To find the opposite of x^{2}-x-6, find the opposite of each term.
1-4x^{2}-x^{2}+x-\left(-6\right)
The opposite of -x is x.
1-4x^{2}-x^{2}+x+6
The opposite of -6 is 6.
1-5x^{2}+x+6
Combine -4x^{2} and -x^{2} to get -5x^{2}.
7-5x^{2}+x
Add 1 and 6 to get 7.