Evaluate
\frac{631}{2400}\approx 0.262916667
Factor
\frac{631}{2 ^ {5} \cdot 3 \cdot 5 ^ {2}} = 0.2629166666666667
Share
Copied to clipboard
\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Convert 1 to fraction \frac{2}{2}.
\left(\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 2 and 1 to get 3.
\left(\frac{9}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\left(\frac{9+2}{6}+\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\left(\frac{11}{6}+\frac{1}{4}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 9 and 2 to get 11.
\left(\frac{22}{12}+\frac{3}{12}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{1}{4} to fractions with denominator 12.
\left(\frac{22+3}{12}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{22}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\left(\frac{25}{12}+\frac{1}{5}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 22 and 3 to get 25.
\left(\frac{125}{60}+\frac{12}{60}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{25}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{125+12}{60}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{125}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
\frac{137}{60}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 125 and 12 to get 137.
\frac{137}{60}\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{137}{60}\left(\frac{3+2}{6}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{137}{60}\left(\frac{5}{6}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 3 and 2 to get 5.
\frac{137}{60}\left(\frac{10}{12}+\frac{3}{12}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{137}{60}\left(\frac{10+3}{12}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{137}{60}\left(\frac{13}{12}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 10 and 3 to get 13.
\frac{137}{60}\left(\frac{65}{60}+\frac{12}{60}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{13}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{137}{60}\left(\frac{65+12}{60}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{65}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
\frac{137}{60}\left(\frac{77}{60}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 65 and 12 to get 77.
\frac{137}{60}\left(\frac{77}{60}+\frac{10}{60}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 60 and 6 is 60. Convert \frac{77}{60} and \frac{1}{6} to fractions with denominator 60.
\frac{137}{60}\times \frac{77+10}{60}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{77}{60} and \frac{10}{60} have the same denominator, add them by adding their numerators.
\frac{137}{60}\times \frac{87}{60}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 77 and 10 to get 87.
\frac{137}{60}\times \frac{29}{20}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Reduce the fraction \frac{87}{60} to lowest terms by extracting and canceling out 3.
\frac{137\times 29}{60\times 20}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Multiply \frac{137}{60} times \frac{29}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{3973}{1200}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Do the multiplications in the fraction \frac{137\times 29}{60\times 20}.
\frac{3973}{1200}-\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{3973}{1200}-\left(\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 2 and 1 to get 3.
\frac{3973}{1200}-\left(\frac{9}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3973}{1200}-\left(\frac{9+2}{6}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\left(\frac{11}{6}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 9 and 2 to get 11.
\frac{3973}{1200}-\left(\frac{22}{12}+\frac{3}{12}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{3973}{1200}-\left(\frac{22+3}{12}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{22}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\left(\frac{25}{12}+\frac{1}{8}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 22 and 3 to get 25.
\frac{3973}{1200}-\left(\frac{50}{24}+\frac{3}{24}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 12 and 8 is 24. Convert \frac{25}{12} and \frac{1}{8} to fractions with denominator 24.
\frac{3973}{1200}-\left(\frac{50+3}{24}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{50}{24} and \frac{3}{24} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\left(\frac{53}{24}+\frac{1}{6}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 50 and 3 to get 53.
\frac{3973}{1200}-\left(\frac{53}{24}+\frac{4}{24}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 24 and 6 is 24. Convert \frac{53}{24} and \frac{1}{6} to fractions with denominator 24.
\frac{3973}{1200}-\frac{53+4}{24}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{53}{24} and \frac{4}{24} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\frac{57}{24}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Add 53 and 4 to get 57.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)
Reduce the fraction \frac{57}{24} to lowest terms by extracting and canceling out 3.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{5}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{3+2}{6}+\frac{1}{4}+\frac{1}{5}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{5}{6}+\frac{1}{4}+\frac{1}{5}\right)
Add 3 and 2 to get 5.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{10}{12}+\frac{3}{12}+\frac{1}{5}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{10+3}{12}+\frac{1}{5}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{13}{12}+\frac{1}{5}\right)
Add 10 and 3 to get 13.
\frac{3973}{1200}-\frac{19}{8}\left(\frac{65}{60}+\frac{12}{60}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{13}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{3973}{1200}-\frac{19}{8}\times \frac{65+12}{60}
Since \frac{65}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
\frac{3973}{1200}-\frac{19}{8}\times \frac{77}{60}
Add 65 and 12 to get 77.
\frac{3973}{1200}-\frac{19\times 77}{8\times 60}
Multiply \frac{19}{8} times \frac{77}{60} by multiplying numerator times numerator and denominator times denominator.
\frac{3973}{1200}-\frac{1463}{480}
Do the multiplications in the fraction \frac{19\times 77}{8\times 60}.
\frac{7946}{2400}-\frac{7315}{2400}
Least common multiple of 1200 and 480 is 2400. Convert \frac{3973}{1200} and \frac{1463}{480} to fractions with denominator 2400.
\frac{7946-7315}{2400}
Since \frac{7946}{2400} and \frac{7315}{2400} have the same denominator, subtract them by subtracting their numerators.
\frac{631}{2400}
Subtract 7315 from 7946 to get 631.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}