Evaluate
-9x^{12}-27x^{10}-27x^{8}-64x^{6}
Expand
-9x^{12}-27x^{10}-27x^{8}-64x^{6}
Graph
Share
Copied to clipboard
\left(-3x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-3\right)^{2}\left(x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(-3x^{3}\right)^{2}.
\left(-3\right)^{2}x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate -3 to the power of 2 and get 9.
9x^{6}-2^{6}x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(2x\right)^{6}.
9x^{6}-64x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate 2 to the power of 6 and get 64.
-55x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Combine 9x^{6} and -64x^{6} to get -55x^{6}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x^{2}\right)^{3}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+\left(x^{2}\right)^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-55x^{6}-9x^{6}-27x^{8}-27x^{10}-9x^{12}
Use the distributive property to multiply -9x^{6} by 1+3x^{2}+3x^{4}+x^{6}.
-64x^{6}-27x^{8}-27x^{10}-9x^{12}
Combine -55x^{6} and -9x^{6} to get -64x^{6}.
\left(-3x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-3\right)^{2}\left(x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(-3x^{3}\right)^{2}.
\left(-3\right)^{2}x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate -3 to the power of 2 and get 9.
9x^{6}-2^{6}x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(2x\right)^{6}.
9x^{6}-64x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate 2 to the power of 6 and get 64.
-55x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Combine 9x^{6} and -64x^{6} to get -55x^{6}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x^{2}\right)^{3}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+\left(x^{2}\right)^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-55x^{6}-9x^{6}-27x^{8}-27x^{10}-9x^{12}
Use the distributive property to multiply -9x^{6} by 1+3x^{2}+3x^{4}+x^{6}.
-64x^{6}-27x^{8}-27x^{10}-9x^{12}
Combine -55x^{6} and -9x^{6} to get -64x^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}