Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-3x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-3\right)^{2}\left(x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(-3x^{3}\right)^{2}.
\left(-3\right)^{2}x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate -3 to the power of 2 and get 9.
9x^{6}-2^{6}x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(2x\right)^{6}.
9x^{6}-64x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate 2 to the power of 6 and get 64.
-55x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Combine 9x^{6} and -64x^{6} to get -55x^{6}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x^{2}\right)^{3}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+\left(x^{2}\right)^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-55x^{6}-9x^{6}-27x^{8}-27x^{10}-9x^{12}
Use the distributive property to multiply -9x^{6} by 1+3x^{2}+3x^{4}+x^{6}.
-64x^{6}-27x^{8}-27x^{10}-9x^{12}
Combine -55x^{6} and -9x^{6} to get -64x^{6}.
\left(-3x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-3\right)^{2}\left(x^{3}\right)^{2}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(-3x^{3}\right)^{2}.
\left(-3\right)^{2}x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9x^{6}-\left(2x\right)^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate -3 to the power of 2 and get 9.
9x^{6}-2^{6}x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Expand \left(2x\right)^{6}.
9x^{6}-64x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Calculate 2 to the power of 6 and get 64.
-55x^{6}-9x^{6}\left(1+x^{2}\right)^{3}
Combine 9x^{6} and -64x^{6} to get -55x^{6}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+x^{2}\right)^{3}.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+\left(x^{2}\right)^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-55x^{6}-9x^{6}\left(1+3x^{2}+3x^{4}+x^{6}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-55x^{6}-9x^{6}-27x^{8}-27x^{10}-9x^{12}
Use the distributive property to multiply -9x^{6} by 1+3x^{2}+3x^{4}+x^{6}.
-64x^{6}-27x^{8}-27x^{10}-9x^{12}
Combine -55x^{6} and -9x^{6} to get -64x^{6}.