Solve for θ, d
\theta =5
d=\frac{6}{7}\approx 0.857142857
Share
Copied to clipboard
14d=21-9
Consider the second equation. Subtract 9 from both sides.
14d=12
Subtract 9 from 21 to get 12.
d=\frac{12}{14}
Divide both sides by 14.
d=\frac{6}{7}
Reduce the fraction \frac{12}{14} to lowest terms by extracting and canceling out 2.
\theta +7\times \frac{6}{7}=11
Consider the first equation. Insert the known values of variables into the equation.
\theta +6=11
Multiply 7 and \frac{6}{7} to get 6.
\theta =11-6
Subtract 6 from both sides.
\theta =5
Subtract 6 from 11 to get 5.
\theta =5 d=\frac{6}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}