Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

5x^{2}+7x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 5\times 15}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 7 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 5\times 15}}{2\times 5}
Square 7.
x=\frac{-7±\sqrt{49-20\times 15}}{2\times 5}
Multiply -4 times 5.
x=\frac{-7±\sqrt{49-300}}{2\times 5}
Multiply -20 times 15.
x=\frac{-7±\sqrt{-251}}{2\times 5}
Add 49 to -300.
x=\frac{-7±\sqrt{251}i}{2\times 5}
Take the square root of -251.
x=\frac{-7±\sqrt{251}i}{10}
Multiply 2 times 5.
x=\frac{-7+\sqrt{251}i}{10}
Now solve the equation x=\frac{-7±\sqrt{251}i}{10} when ± is plus. Add -7 to i\sqrt{251}.
x=\frac{-\sqrt{251}i-7}{10}
Now solve the equation x=\frac{-7±\sqrt{251}i}{10} when ± is minus. Subtract i\sqrt{251} from -7.
x=\frac{-7+\sqrt{251}i}{10} x=\frac{-\sqrt{251}i-7}{10}
The equation is now solved.
5x^{2}+7x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+7x+15-15=-15
Subtract 15 from both sides of the equation.
5x^{2}+7x=-15
Subtracting 15 from itself leaves 0.
\frac{5x^{2}+7x}{5}=-\frac{15}{5}
Divide both sides by 5.
x^{2}+\frac{7}{5}x=-\frac{15}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{7}{5}x=-3
Divide -15 by 5.
x^{2}+\frac{7}{5}x+\left(\frac{7}{10}\right)^{2}=-3+\left(\frac{7}{10}\right)^{2}
Divide \frac{7}{5}, the coefficient of the x term, by 2 to get \frac{7}{10}. Then add the square of \frac{7}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{5}x+\frac{49}{100}=-3+\frac{49}{100}
Square \frac{7}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{5}x+\frac{49}{100}=-\frac{251}{100}
Add -3 to \frac{49}{100}.
\left(x+\frac{7}{10}\right)^{2}=-\frac{251}{100}
Factor x^{2}+\frac{7}{5}x+\frac{49}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{10}\right)^{2}}=\sqrt{-\frac{251}{100}}
Take the square root of both sides of the equation.
x+\frac{7}{10}=\frac{\sqrt{251}i}{10} x+\frac{7}{10}=-\frac{\sqrt{251}i}{10}
Simplify.
x=\frac{-7+\sqrt{251}i}{10} x=\frac{-\sqrt{251}i-7}{10}
Subtract \frac{7}{10} from both sides of the equation.