Solve for y
y=-1
Share
Copied to clipboard
\left(\sqrt{3y+1}\right)^{2}=\left(\sqrt{y-1}\right)^{2}
Square both sides of the equation.
3y+1=\left(\sqrt{y-1}\right)^{2}
Calculate \sqrt{3y+1} to the power of 2 and get 3y+1.
3y+1=y-1
Calculate \sqrt{y-1} to the power of 2 and get y-1.
3y+1-y=-1
Subtract y from both sides.
2y+1=-1
Combine 3y and -y to get 2y.
2y=-1-1
Subtract 1 from both sides.
2y=-2
Subtract 1 from -1 to get -2.
y=\frac{-2}{2}
Divide both sides by 2.
y=-1
Divide -2 by 2 to get -1.
\sqrt{3\left(-1\right)+1}=\sqrt{-1-1}
Substitute -1 for y in the equation \sqrt{3y+1}=\sqrt{y-1}.
i\times 2^{\frac{1}{2}}=i\times 2^{\frac{1}{2}}
Simplify. The value y=-1 satisfies the equation.
y=-1
Equation \sqrt{3y+1}=\sqrt{y-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}