Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}-\sqrt{6}-2\sqrt{5}+\sqrt{\frac{2}{3}}+\sqrt{\frac{9}{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
-\sqrt{5}-\sqrt{6}+\sqrt{\frac{2}{3}}+\sqrt{\frac{9}{5}}
Combine \sqrt{5} and -2\sqrt{5} to get -\sqrt{5}.
-\sqrt{5}-\sqrt{6}+\frac{\sqrt{2}}{\sqrt{3}}+\sqrt{\frac{9}{5}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
-\sqrt{5}-\sqrt{6}+\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{\frac{9}{5}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-\sqrt{5}-\sqrt{6}+\frac{\sqrt{2}\sqrt{3}}{3}+\sqrt{\frac{9}{5}}
The square of \sqrt{3} is 3.
-\sqrt{5}-\sqrt{6}+\frac{\sqrt{6}}{3}+\sqrt{\frac{9}{5}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-\sqrt{5}-\frac{2}{3}\sqrt{6}+\sqrt{\frac{9}{5}}
Combine -\sqrt{6} and \frac{\sqrt{6}}{3} to get -\frac{2}{3}\sqrt{6}.
-\sqrt{5}-\frac{2}{3}\sqrt{6}+\frac{\sqrt{9}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{9}{5}} as the division of square roots \frac{\sqrt{9}}{\sqrt{5}}.
-\sqrt{5}-\frac{2}{3}\sqrt{6}+\frac{3}{\sqrt{5}}
Calculate the square root of 9 and get 3.
-\sqrt{5}-\frac{2}{3}\sqrt{6}+\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
-\sqrt{5}-\frac{2}{3}\sqrt{6}+\frac{3\sqrt{5}}{5}
The square of \sqrt{5} is 5.
-\frac{2}{5}\sqrt{5}-\frac{2}{3}\sqrt{6}
Combine -\sqrt{5} and \frac{3\sqrt{5}}{5} to get -\frac{2}{5}\sqrt{5}.