Solve for x, y
x=6\left(\sqrt{3}-\sqrt{2}\right)\approx 1.907023471
y=\frac{3\sqrt{2}\left(\sqrt{6}-3\right)}{2}\approx -1.167808608
Graph
Share
Copied to clipboard
\left(\sqrt{2}+\sqrt{3}\right)x=6
Consider the first equation. Combine all terms containing x,y.
\sqrt{3}x+2\sqrt{2}y=0
Consider the second equation. Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(\sqrt{2}+\sqrt{3}\right)x=6,\sqrt{3}x+2\sqrt{2}y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(\sqrt{2}+\sqrt{3}\right)x=6
Pick one of the two equations which is more simple to solve for x by isolating x on the left hand side of the equal sign.
x=6\sqrt{3}-6\sqrt{2}
Divide both sides by \sqrt{2}+\sqrt{3}.
\sqrt{3}\left(6\sqrt{3}-6\sqrt{2}\right)+2\sqrt{2}y=0
Substitute -6\sqrt{2}+6\sqrt{3} for x in the other equation, \sqrt{3}x+2\sqrt{2}y=0.
18-6\sqrt{6}+2\sqrt{2}y=0
Multiply \sqrt{3} times -6\sqrt{2}+6\sqrt{3}.
2\sqrt{2}y=6\sqrt{6}-18
Subtract -6\sqrt{6}+18 from both sides of the equation.
y=-\frac{9\sqrt{2}}{2}+3\sqrt{3}
Divide both sides by 2\sqrt{2}.
x=6\sqrt{3}-6\sqrt{2},y=-\frac{9\sqrt{2}}{2}+3\sqrt{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}