Evaluate
-\frac{1}{2}=-0.5
Share
Copied to clipboard
\sqrt{2}\times \frac{\sqrt{2}}{2}-\sqrt{3}\cos(30)
Get the value of \sin(45) from trigonometric values table.
\frac{\sqrt{2}\sqrt{2}}{2}-\sqrt{3}\cos(30)
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{\sqrt{2}\sqrt{2}}{2}-\sqrt{3}\times \frac{\sqrt{3}}{2}
Get the value of \cos(30) from trigonometric values table.
\frac{\sqrt{2}\sqrt{2}}{2}-\frac{\sqrt{3}\sqrt{3}}{2}
Express \sqrt{3}\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{\sqrt{2}\sqrt{2}}{2}-\frac{3}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\sqrt{2}\sqrt{2}-3}{2}
Since \frac{\sqrt{2}\sqrt{2}}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2-3}{2}
Do the multiplications in \sqrt{2}\sqrt{2}-3.
\frac{-1}{2}
Do the calculations in 2-3.
-\frac{1}{2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}