Evaluate
-\frac{1}{4}=-0.25
Share
Copied to clipboard
\left(\frac{\sqrt{3}}{2}\right)^{2}+\sin(45)\cos(45)-\cos(30)\tan(60)
Get the value of \sin(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\sin(45)\cos(45)-\cos(30)\tan(60)
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\sqrt{2}}{2}\cos(45)-\cos(30)\tan(60)
Get the value of \sin(45) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\sqrt{2}}{2}\times \frac{\sqrt{2}}{2}-\cos(30)\tan(60)
Get the value of \cos(45) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{2}}{2}\right)^{2}-\cos(30)\tan(60)
Multiply \frac{\sqrt{2}}{2} and \frac{\sqrt{2}}{2} to get \left(\frac{\sqrt{2}}{2}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\cos(30)\tan(60)
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\cos(30)\tan(60)
Since \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{\sqrt{3}}{2}\tan(60)
Get the value of \cos(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{\sqrt{3}}{2}\sqrt{3}
Get the value of \tan(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{\sqrt{3}\sqrt{3}}{2}
Express \frac{\sqrt{3}}{2}\sqrt{3} as a single fraction.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{3}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{4}-\frac{3\times 2}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 2 is 4. Multiply \frac{3}{2} times \frac{2}{2}.
\frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}-3\times 2}{4}
Since \frac{\left(\sqrt{3}\right)^{2}+\left(\sqrt{2}\right)^{2}}{4} and \frac{3\times 2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{3+\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{3}{2}
The square of \sqrt{3} is 3.
\frac{3+2}{2^{2}}-\frac{3}{2}
The square of \sqrt{2} is 2.
\frac{5}{2^{2}}-\frac{3}{2}
Add 3 and 2 to get 5.
\frac{5}{4}-\frac{3}{2}
Calculate 2 to the power of 2 and get 4.
-\frac{1}{4}
Subtract \frac{3}{2} from \frac{5}{4} to get -\frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}