\left. \begin{array} { l } { \ln P + \gamma \ln V = \ln K } \\ { \frac { 1 } { P } d P + \frac { \gamma } { V } d V = 0 } \\ { \frac { d P } { P } = - 1.4 \times \frac { d V } { V } } \end{array} \right.
Solve for P, γ, V, K, d (complex solution)
\left\{\begin{matrix}P=KV\text{, }\gamma =-1\text{, }V\neq 0\text{, }K\neq 0\text{, }d=0\text{, }&K\neq 0\text{ and }V\neq 0\text{ and }Im(\ln(KV))-Im(\ln(K))-Im(\ln(V))=0\\P=\frac{K}{e^{\gamma \ln(V)}}\text{, }\gamma \in \mathrm{C}\text{, }V\neq 0\text{, }K\neq 0\text{, }d=0\text{, }&Im(\ln(\frac{K}{e^{\gamma \ln(V)}}))+Re(\gamma )Im(\ln(V))+Im(\gamma )Re(\ln(V))-Im(\ln(K))=0\text{ and }V\neq 0\text{ and }K\neq 0\end{matrix}\right.
Solve for P, γ, V, K, d
\left\{\begin{matrix}P=\frac{K}{V^{\gamma }}\text{, }\gamma \geq 0\text{, }V>0\text{, }K>0\text{, }d=0\text{, }&\left(K\neq 0\text{ and }V>0\right)\text{ or }\left(K\neq 0\text{ and }V<0\text{ and }Denominator(\gamma )\text{bmod}2=1\right)\text{ or }\left(V=0\text{ and }\gamma <0\right)\\P=\frac{K}{V^{\gamma }}\text{, }\gamma \in \mathrm{R}\text{, }V>0\text{, }K>0\text{, }d=0\text{, }&K\neq 0\text{ and }\left(V>0\text{ or }Denominator(\gamma )\text{bmod}2=1\right)\text{ and }V\neq 0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}