Solve for x
x=\frac{y\left(3a+4b\right)}{c+6b}
a\neq -\frac{4b}{3}\text{ and }b\neq -\frac{c}{6}
Graph
Share
Copied to clipboard
\left(6b+c\right)x=\left(3a+4b\right)y
Multiply both sides of the equation by \left(6b+c\right)\left(3a+4b\right), the least common multiple of 3a+4b,6b+c.
6bx+cx=\left(3a+4b\right)y
Use the distributive property to multiply 6b+c by x.
6bx+cx=3ay+4by
Use the distributive property to multiply 3a+4b by y.
\left(6b+c\right)x=3ay+4by
Combine all terms containing x.
\frac{\left(6b+c\right)x}{6b+c}=\frac{y\left(3a+4b\right)}{6b+c}
Divide both sides by 6b+c.
x=\frac{y\left(3a+4b\right)}{6b+c}
Dividing by 6b+c undoes the multiplication by 6b+c.
x=\frac{y\left(3a+4b\right)}{c+6b}
Divide y\left(3a+4b\right) by 6b+c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}