Solve for x, y
x=60
y=48
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{2}y=44,\frac{1}{2}x+y=78
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{3}x+\frac{1}{2}y=44
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{3}x=-\frac{1}{2}y+44
Subtract \frac{y}{2} from both sides of the equation.
x=3\left(-\frac{1}{2}y+44\right)
Multiply both sides by 3.
x=-\frac{3}{2}y+132
Multiply 3 times -\frac{y}{2}+44.
\frac{1}{2}\left(-\frac{3}{2}y+132\right)+y=78
Substitute -\frac{3y}{2}+132 for x in the other equation, \frac{1}{2}x+y=78.
-\frac{3}{4}y+66+y=78
Multiply \frac{1}{2} times -\frac{3y}{2}+132.
\frac{1}{4}y+66=78
Add -\frac{3y}{4} to y.
\frac{1}{4}y=12
Subtract 66 from both sides of the equation.
y=48
Multiply both sides by 4.
x=-\frac{3}{2}\times 48+132
Substitute 48 for y in x=-\frac{3}{2}y+132. Because the resulting equation contains only one variable, you can solve for x directly.
x=-72+132
Multiply -\frac{3}{2} times 48.
x=60
Add 132 to -72.
x=60,y=48
The system is now solved.
\frac{1}{3}x+\frac{1}{2}y=44,\frac{1}{2}x+y=78
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}44\\78\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}44\\78\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}44\\78\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}44\\78\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{3}-\frac{1}{2}\times \frac{1}{2}}&-\frac{\frac{1}{2}}{\frac{1}{3}-\frac{1}{2}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{3}-\frac{1}{2}\times \frac{1}{2}}&\frac{\frac{1}{3}}{\frac{1}{3}-\frac{1}{2}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}44\\78\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12&-6\\-6&4\end{matrix}\right)\left(\begin{matrix}44\\78\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\times 44-6\times 78\\-6\times 44+4\times 78\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\48\end{matrix}\right)
Do the arithmetic.
x=60,y=48
Extract the matrix elements x and y.
\frac{1}{3}x+\frac{1}{2}y=44,\frac{1}{2}x+y=78
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{2}\times \frac{1}{3}x+\frac{1}{2}\times \frac{1}{2}y=\frac{1}{2}\times 44,\frac{1}{3}\times \frac{1}{2}x+\frac{1}{3}y=\frac{1}{3}\times 78
To make \frac{x}{3} and \frac{x}{2} equal, multiply all terms on each side of the first equation by \frac{1}{2} and all terms on each side of the second by \frac{1}{3}.
\frac{1}{6}x+\frac{1}{4}y=22,\frac{1}{6}x+\frac{1}{3}y=26
Simplify.
\frac{1}{6}x-\frac{1}{6}x+\frac{1}{4}y-\frac{1}{3}y=22-26
Subtract \frac{1}{6}x+\frac{1}{3}y=26 from \frac{1}{6}x+\frac{1}{4}y=22 by subtracting like terms on each side of the equal sign.
\frac{1}{4}y-\frac{1}{3}y=22-26
Add \frac{x}{6} to -\frac{x}{6}. Terms \frac{x}{6} and -\frac{x}{6} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{12}y=22-26
Add \frac{y}{4} to -\frac{y}{3}.
-\frac{1}{12}y=-4
Add 22 to -26.
y=48
Multiply both sides by -12.
\frac{1}{2}x+48=78
Substitute 48 for y in \frac{1}{2}x+y=78. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{2}x=30
Subtract 48 from both sides of the equation.
x=60
Multiply both sides by 2.
x=60,y=48
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}