Solve for x
x=\frac{1}{10}=0.1
x=0
Graph
Share
Copied to clipboard
3x=2\times 15x^{2}
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x=30x^{2}
Multiply 2 and 15 to get 30.
3x-30x^{2}=0
Subtract 30x^{2} from both sides.
x\left(3-30x\right)=0
Factor out x.
x=0 x=\frac{1}{10}
To find equation solutions, solve x=0 and 3-30x=0.
3x=2\times 15x^{2}
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x=30x^{2}
Multiply 2 and 15 to get 30.
3x-30x^{2}=0
Subtract 30x^{2} from both sides.
-30x^{2}+3x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\left(-30\right)}
Take the square root of 3^{2}.
x=\frac{-3±3}{-60}
Multiply 2 times -30.
x=\frac{0}{-60}
Now solve the equation x=\frac{-3±3}{-60} when ± is plus. Add -3 to 3.
x=0
Divide 0 by -60.
x=-\frac{6}{-60}
Now solve the equation x=\frac{-3±3}{-60} when ± is minus. Subtract 3 from -3.
x=\frac{1}{10}
Reduce the fraction \frac{-6}{-60} to lowest terms by extracting and canceling out 6.
x=0 x=\frac{1}{10}
The equation is now solved.
3x=2\times 15x^{2}
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x=30x^{2}
Multiply 2 and 15 to get 30.
3x-30x^{2}=0
Subtract 30x^{2} from both sides.
-30x^{2}+3x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-30x^{2}+3x}{-30}=\frac{0}{-30}
Divide both sides by -30.
x^{2}+\frac{3}{-30}x=\frac{0}{-30}
Dividing by -30 undoes the multiplication by -30.
x^{2}-\frac{1}{10}x=\frac{0}{-30}
Reduce the fraction \frac{3}{-30} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{10}x=0
Divide 0 by -30.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\left(-\frac{1}{20}\right)^{2}
Divide -\frac{1}{10}, the coefficient of the x term, by 2 to get -\frac{1}{20}. Then add the square of -\frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{1}{400}
Square -\frac{1}{20} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{20}\right)^{2}=\frac{1}{400}
Factor x^{2}-\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
Take the square root of both sides of the equation.
x-\frac{1}{20}=\frac{1}{20} x-\frac{1}{20}=-\frac{1}{20}
Simplify.
x=\frac{1}{10} x=0
Add \frac{1}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}