Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=26
Consider the first equation. Multiply both sides of the equation by 2.
3x-7y=0
Consider the second equation. Multiply both sides of the equation by 21, the least common multiple of 7,3.
x+2y=26,3x-7y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=26
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+26
Subtract 2y from both sides of the equation.
3\left(-2y+26\right)-7y=0
Substitute -2y+26 for x in the other equation, 3x-7y=0.
-6y+78-7y=0
Multiply 3 times -2y+26.
-13y+78=0
Add -6y to -7y.
-13y=-78
Subtract 78 from both sides of the equation.
y=6
Divide both sides by -13.
x=-2\times 6+26
Substitute 6 for y in x=-2y+26. Because the resulting equation contains only one variable, you can solve for x directly.
x=-12+26
Multiply -2 times 6.
x=14
Add 26 to -12.
x=14,y=6
The system is now solved.
x+2y=26
Consider the first equation. Multiply both sides of the equation by 2.
3x-7y=0
Consider the second equation. Multiply both sides of the equation by 21, the least common multiple of 7,3.
x+2y=26,3x-7y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}26\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\3&-7\end{matrix}\right))\left(\begin{matrix}1&2\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-7\end{matrix}\right))\left(\begin{matrix}26\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\3&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-7\end{matrix}\right))\left(\begin{matrix}26\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-7\end{matrix}\right))\left(\begin{matrix}26\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-2\times 3}&-\frac{2}{-7-2\times 3}\\-\frac{3}{-7-2\times 3}&\frac{1}{-7-2\times 3}\end{matrix}\right)\left(\begin{matrix}26\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}&\frac{2}{13}\\\frac{3}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}26\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\times 26\\\frac{3}{13}\times 26\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\6\end{matrix}\right)
Do the arithmetic.
x=14,y=6
Extract the matrix elements x and y.
x+2y=26
Consider the first equation. Multiply both sides of the equation by 2.
3x-7y=0
Consider the second equation. Multiply both sides of the equation by 21, the least common multiple of 7,3.
x+2y=26,3x-7y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3\times 2y=3\times 26,3x-7y=0
To make x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x+6y=78,3x-7y=0
Simplify.
3x-3x+6y+7y=78
Subtract 3x-7y=0 from 3x+6y=78 by subtracting like terms on each side of the equal sign.
6y+7y=78
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
13y=78
Add 6y to 7y.
y=6
Divide both sides by 13.
3x-7\times 6=0
Substitute 6 for y in 3x-7y=0. Because the resulting equation contains only one variable, you can solve for x directly.
3x-42=0
Multiply -7 times 6.
3x=42
Add 42 to both sides of the equation.
x=14
Divide both sides by 3.
x=14,y=6
The system is now solved.