Skip to main content
Solve for x, y
Tick mark Image
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3y^{2}=3
Consider the first equation. Multiply both sides of the equation by 3.
y=kx-k
Consider the second equation. Use the distributive property to multiply k by x-1.
x^{2}+3\left(kx-k\right)^{2}=3
Substitute kx-k for y in the other equation, x^{2}+3y^{2}=3.
x^{2}+3\left(k^{2}x^{2}+2\left(-k\right)kx+\left(-k\right)^{2}\right)=3
Square kx-k.
x^{2}+3k^{2}x^{2}+6\left(-k\right)kx+3\left(-k\right)^{2}=3
Multiply 3 times k^{2}x^{2}+2\left(-k\right)kx+\left(-k\right)^{2}.
\left(3k^{2}+1\right)x^{2}+6\left(-k\right)kx+3\left(-k\right)^{2}=3
Add x^{2} to 3k^{2}x^{2}.
\left(3k^{2}+1\right)x^{2}+6\left(-k\right)kx+3\left(-k\right)^{2}-3=0
Subtract 3 from both sides of the equation.
x=\frac{-6\left(-k\right)k±\sqrt{\left(6\left(-k\right)k\right)^{2}-4\left(3k^{2}+1\right)\left(3k^{2}-3\right)}}{2\left(3k^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+3k^{2} for a, 3\times 2k\left(-k\right) for b, and -3+3k^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6\left(-k\right)k±\sqrt{36k^{4}-4\left(3k^{2}+1\right)\left(3k^{2}-3\right)}}{2\left(3k^{2}+1\right)}
Square 3\times 2k\left(-k\right).
x=\frac{-6\left(-k\right)k±\sqrt{36k^{4}+\left(-12k^{2}-4\right)\left(3k^{2}-3\right)}}{2\left(3k^{2}+1\right)}
Multiply -4 times 1+3k^{2}.
x=\frac{-6\left(-k\right)k±\sqrt{36k^{4}+12+24k^{2}-36k^{4}}}{2\left(3k^{2}+1\right)}
Multiply -4-12k^{2} times -3+3k^{2}.
x=\frac{-6\left(-k\right)k±\sqrt{24k^{2}+12}}{2\left(3k^{2}+1\right)}
Add 36k^{4} to 24k^{2}+12-36k^{4}.
x=\frac{-6\left(-k\right)k±2\sqrt{6k^{2}+3}}{2\left(3k^{2}+1\right)}
Take the square root of 12+24k^{2}.
x=\frac{6k^{2}±2\sqrt{6k^{2}+3}}{6k^{2}+2}
Multiply 2 times 1+3k^{2}.
x=\frac{6k^{2}+2\sqrt{6k^{2}+3}}{6k^{2}+2}
Now solve the equation x=\frac{6k^{2}±2\sqrt{6k^{2}+3}}{6k^{2}+2} when ± is plus. Add 6k^{2} to 2\sqrt{3+6k^{2}}.
x=\frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{2k^{2}+1}\right)}{3k^{2}+1}
Divide 6k^{2}+2\sqrt{3+6k^{2}} by 2+6k^{2}.
x=\frac{6k^{2}-2\sqrt{6k^{2}+3}}{6k^{2}+2}
Now solve the equation x=\frac{6k^{2}±2\sqrt{6k^{2}+3}}{6k^{2}+2} when ± is minus. Subtract 2\sqrt{3+6k^{2}} from 6k^{2}.
x=\frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{2k^{2}+1}\right)}{3k^{2}+1}
Divide 6k^{2}-2\sqrt{3+6k^{2}} by 2+6k^{2}.
y=k\times \frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{2k^{2}+1}\right)}{3k^{2}+1}-k
There are two solutions for x: \frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{1+2k^{2}}\right)}{1+3k^{2}} and \frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{1+2k^{2}}\right)}{1+3k^{2}}. Substitute \frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{1+2k^{2}}\right)}{1+3k^{2}} for x in the equation y=kx-k to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{2k^{2}+1}\right)}{3k^{2}+1}k-k
Multiply k times \frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{1+2k^{2}}\right)}{1+3k^{2}}.
y=k\times \frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{2k^{2}+1}\right)}{3k^{2}+1}-k
Now substitute \frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{1+2k^{2}}\right)}{1+3k^{2}} for x in the equation y=kx-k and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{2k^{2}+1}\right)}{3k^{2}+1}k-k
Multiply k times \frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{1+2k^{2}}\right)}{1+3k^{2}}.
y=\frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{2k^{2}+1}\right)}{3k^{2}+1}k-k,x=\frac{\sqrt{3}\left(\sqrt{3}k^{2}+\sqrt{2k^{2}+1}\right)}{3k^{2}+1}\text{ or }y=\frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{2k^{2}+1}\right)}{3k^{2}+1}k-k,x=\frac{\sqrt{3}\left(\sqrt{3}k^{2}-\sqrt{2k^{2}+1}\right)}{3k^{2}+1}
The system is now solved.