Skip to main content
Solve for x, a
Tick mark Image

Similar Problems from Web Search

Share

3\left(x+5\right)-2\left(3x-4\right)=3x+23
Consider the first equation. Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
3x+15-2\left(3x-4\right)=3x+23
Use the distributive property to multiply 3 by x+5.
3x+15-6x+8=3x+23
Use the distributive property to multiply -2 by 3x-4.
-3x+15+8=3x+23
Combine 3x and -6x to get -3x.
-3x+23=3x+23
Add 15 and 8 to get 23.
-3x+23-3x=23
Subtract 3x from both sides.
-6x+23=23
Combine -3x and -3x to get -6x.
-6x=23-23
Subtract 23 from both sides.
-6x=0
Subtract 23 from 23 to get 0.
x=0
Divide both sides by -6. Zero divided by any non-zero number gives zero.
\frac{2}{3}a-2+\frac{1}{2}\left(a+1\right)=\frac{5}{2}\left(a+2\right)-\frac{1}{4}
Consider the second equation. Use the distributive property to multiply \frac{2}{3} by a-3.
\frac{2}{3}a-2+\frac{1}{2}a+\frac{1}{2}=\frac{5}{2}\left(a+2\right)-\frac{1}{4}
Use the distributive property to multiply \frac{1}{2} by a+1.
\frac{7}{6}a-2+\frac{1}{2}=\frac{5}{2}\left(a+2\right)-\frac{1}{4}
Combine \frac{2}{3}a and \frac{1}{2}a to get \frac{7}{6}a.
\frac{7}{6}a-\frac{3}{2}=\frac{5}{2}\left(a+2\right)-\frac{1}{4}
Add -2 and \frac{1}{2} to get -\frac{3}{2}.
\frac{7}{6}a-\frac{3}{2}=\frac{5}{2}a+5-\frac{1}{4}
Use the distributive property to multiply \frac{5}{2} by a+2.
\frac{7}{6}a-\frac{3}{2}=\frac{5}{2}a+\frac{19}{4}
Subtract \frac{1}{4} from 5 to get \frac{19}{4}.
\frac{7}{6}a-\frac{3}{2}-\frac{5}{2}a=\frac{19}{4}
Subtract \frac{5}{2}a from both sides.
-\frac{4}{3}a-\frac{3}{2}=\frac{19}{4}
Combine \frac{7}{6}a and -\frac{5}{2}a to get -\frac{4}{3}a.
-\frac{4}{3}a=\frac{19}{4}+\frac{3}{2}
Add \frac{3}{2} to both sides.
-\frac{4}{3}a=\frac{25}{4}
Add \frac{19}{4} and \frac{3}{2} to get \frac{25}{4}.
a=\frac{25}{4}\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}.
a=-\frac{75}{16}
Multiply \frac{25}{4} and -\frac{3}{4} to get -\frac{75}{16}.
x=0 a=-\frac{75}{16}
The system is now solved.