Solve for A, x
x = \frac{595}{12} = 49\frac{7}{12} \approx 49.583333333
A=35
Share
Copied to clipboard
169=12\times 17-A
Consider the second equation. Calculate 13 to the power of 2 and get 169.
169=204-A
Multiply 12 and 17 to get 204.
204-A=169
Swap sides so that all variable terms are on the left hand side.
-A=169-204
Subtract 204 from both sides.
-A=-35
Subtract 204 from 169 to get -35.
A=\frac{-35}{-1}
Divide both sides by -1.
A=35
Fraction \frac{-35}{-1} can be simplified to 35 by removing the negative sign from both the numerator and the denominator.
\frac{35}{12}=\frac{x}{17}
Consider the first equation. Insert the known values of variables into the equation.
17\times 35=12x
Multiply both sides of the equation by 204, the least common multiple of 12,17.
595=12x
Multiply 17 and 35 to get 595.
12x=595
Swap sides so that all variable terms are on the left hand side.
x=\frac{595}{12}
Divide both sides by 12.
A=35 x=\frac{595}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}