Solve for V_1, V_2
V_{1}=32
V_{2}=110
Share
Copied to clipboard
52\left(40-V_{1}\right)-1560-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Consider the first equation. Multiply both sides of the equation by 520, the least common multiple of 10,40,26.
2080-52V_{1}-1560-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Use the distributive property to multiply 52 by 40-V_{1}.
520-52V_{1}-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Subtract 1560 from 2080 to get 520.
520-65V_{1}-20\left(V_{1}-V_{2}\right)=0
Combine -52V_{1} and -13V_{1} to get -65V_{1}.
520-65V_{1}-20V_{1}+20V_{2}=0
Use the distributive property to multiply -20 by V_{1}-V_{2}.
520-85V_{1}+20V_{2}=0
Combine -65V_{1} and -20V_{1} to get -85V_{1}.
-85V_{1}+20V_{2}=-520
Subtract 520 from both sides. Anything subtracted from zero gives its negation.
78+V_{1}-V_{2}=0
Consider the second equation. Multiply both sides of the equation by 26.
V_{1}-V_{2}=-78
Subtract 78 from both sides. Anything subtracted from zero gives its negation.
-85V_{1}+20V_{2}=-520,V_{1}-V_{2}=-78
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-85V_{1}+20V_{2}=-520
Choose one of the equations and solve it for V_{1} by isolating V_{1} on the left hand side of the equal sign.
-85V_{1}=-20V_{2}-520
Subtract 20V_{2} from both sides of the equation.
V_{1}=-\frac{1}{85}\left(-20V_{2}-520\right)
Divide both sides by -85.
V_{1}=\frac{4}{17}V_{2}+\frac{104}{17}
Multiply -\frac{1}{85} times -20V_{2}-520.
\frac{4}{17}V_{2}+\frac{104}{17}-V_{2}=-78
Substitute \frac{104+4V_{2}}{17} for V_{1} in the other equation, V_{1}-V_{2}=-78.
-\frac{13}{17}V_{2}+\frac{104}{17}=-78
Add \frac{4V_{2}}{17} to -V_{2}.
-\frac{13}{17}V_{2}=-\frac{1430}{17}
Subtract \frac{104}{17} from both sides of the equation.
V_{2}=110
Divide both sides of the equation by -\frac{13}{17}, which is the same as multiplying both sides by the reciprocal of the fraction.
V_{1}=\frac{4}{17}\times 110+\frac{104}{17}
Substitute 110 for V_{2} in V_{1}=\frac{4}{17}V_{2}+\frac{104}{17}. Because the resulting equation contains only one variable, you can solve for V_{1} directly.
V_{1}=\frac{440+104}{17}
Multiply \frac{4}{17} times 110.
V_{1}=32
Add \frac{104}{17} to \frac{440}{17} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
V_{1}=32,V_{2}=110
The system is now solved.
52\left(40-V_{1}\right)-1560-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Consider the first equation. Multiply both sides of the equation by 520, the least common multiple of 10,40,26.
2080-52V_{1}-1560-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Use the distributive property to multiply 52 by 40-V_{1}.
520-52V_{1}-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Subtract 1560 from 2080 to get 520.
520-65V_{1}-20\left(V_{1}-V_{2}\right)=0
Combine -52V_{1} and -13V_{1} to get -65V_{1}.
520-65V_{1}-20V_{1}+20V_{2}=0
Use the distributive property to multiply -20 by V_{1}-V_{2}.
520-85V_{1}+20V_{2}=0
Combine -65V_{1} and -20V_{1} to get -85V_{1}.
-85V_{1}+20V_{2}=-520
Subtract 520 from both sides. Anything subtracted from zero gives its negation.
78+V_{1}-V_{2}=0
Consider the second equation. Multiply both sides of the equation by 26.
V_{1}-V_{2}=-78
Subtract 78 from both sides. Anything subtracted from zero gives its negation.
-85V_{1}+20V_{2}=-520,V_{1}-V_{2}=-78
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-85&20\\1&-1\end{matrix}\right)\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}-520\\-78\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-85&20\\1&-1\end{matrix}\right))\left(\begin{matrix}-85&20\\1&-1\end{matrix}\right)\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}-85&20\\1&-1\end{matrix}\right))\left(\begin{matrix}-520\\-78\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-85&20\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}-85&20\\1&-1\end{matrix}\right))\left(\begin{matrix}-520\\-78\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}-85&20\\1&-1\end{matrix}\right))\left(\begin{matrix}-520\\-78\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-85\left(-1\right)-20}&-\frac{20}{-85\left(-1\right)-20}\\-\frac{1}{-85\left(-1\right)-20}&-\frac{85}{-85\left(-1\right)-20}\end{matrix}\right)\left(\begin{matrix}-520\\-78\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{65}&-\frac{4}{13}\\-\frac{1}{65}&-\frac{17}{13}\end{matrix}\right)\left(\begin{matrix}-520\\-78\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{65}\left(-520\right)-\frac{4}{13}\left(-78\right)\\-\frac{1}{65}\left(-520\right)-\frac{17}{13}\left(-78\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}V_{1}\\V_{2}\end{matrix}\right)=\left(\begin{matrix}32\\110\end{matrix}\right)
Do the arithmetic.
V_{1}=32,V_{2}=110
Extract the matrix elements V_{1} and V_{2}.
52\left(40-V_{1}\right)-1560-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Consider the first equation. Multiply both sides of the equation by 520, the least common multiple of 10,40,26.
2080-52V_{1}-1560-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Use the distributive property to multiply 52 by 40-V_{1}.
520-52V_{1}-13V_{1}-20\left(V_{1}-V_{2}\right)=0
Subtract 1560 from 2080 to get 520.
520-65V_{1}-20\left(V_{1}-V_{2}\right)=0
Combine -52V_{1} and -13V_{1} to get -65V_{1}.
520-65V_{1}-20V_{1}+20V_{2}=0
Use the distributive property to multiply -20 by V_{1}-V_{2}.
520-85V_{1}+20V_{2}=0
Combine -65V_{1} and -20V_{1} to get -85V_{1}.
-85V_{1}+20V_{2}=-520
Subtract 520 from both sides. Anything subtracted from zero gives its negation.
78+V_{1}-V_{2}=0
Consider the second equation. Multiply both sides of the equation by 26.
V_{1}-V_{2}=-78
Subtract 78 from both sides. Anything subtracted from zero gives its negation.
-85V_{1}+20V_{2}=-520,V_{1}-V_{2}=-78
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-85V_{1}+20V_{2}=-520,-85V_{1}-85\left(-1\right)V_{2}=-85\left(-78\right)
To make -85V_{1} and V_{1} equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by -85.
-85V_{1}+20V_{2}=-520,-85V_{1}+85V_{2}=6630
Simplify.
-85V_{1}+85V_{1}+20V_{2}-85V_{2}=-520-6630
Subtract -85V_{1}+85V_{2}=6630 from -85V_{1}+20V_{2}=-520 by subtracting like terms on each side of the equal sign.
20V_{2}-85V_{2}=-520-6630
Add -85V_{1} to 85V_{1}. Terms -85V_{1} and 85V_{1} cancel out, leaving an equation with only one variable that can be solved.
-65V_{2}=-520-6630
Add 20V_{2} to -85V_{2}.
-65V_{2}=-7150
Add -520 to -6630.
V_{2}=110
Divide both sides by -65.
V_{1}-110=-78
Substitute 110 for V_{2} in V_{1}-V_{2}=-78. Because the resulting equation contains only one variable, you can solve for V_{1} directly.
V_{1}=32
Add 110 to both sides of the equation.
V_{1}=32,V_{2}=110
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}