Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

13\times 3x-7\times 2y=455
Consider the first equation. Multiply both sides of the equation by 91, the least common multiple of 7,13.
39x-7\times 2y=455
Multiply 13 and 3 to get 39.
39x-14y=455
Multiply -7 and 2 to get -14.
39x-14y=455,x+\frac{1}{3}y=\frac{3}{5}
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
39x-14y=455
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
39x=14y+455
Add 14y to both sides of the equation.
x=\frac{1}{39}\left(14y+455\right)
Divide both sides by 39.
x=\frac{14}{39}y+\frac{35}{3}
Multiply \frac{1}{39} times 14y+455.
\frac{14}{39}y+\frac{35}{3}+\frac{1}{3}y=\frac{3}{5}
Substitute \frac{14y}{39}+\frac{35}{3} for x in the other equation, x+\frac{1}{3}y=\frac{3}{5}.
\frac{9}{13}y+\frac{35}{3}=\frac{3}{5}
Add \frac{14y}{39} to \frac{y}{3}.
\frac{9}{13}y=-\frac{166}{15}
Subtract \frac{35}{3} from both sides of the equation.
y=-\frac{2158}{135}
Divide both sides of the equation by \frac{9}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{14}{39}\left(-\frac{2158}{135}\right)+\frac{35}{3}
Substitute -\frac{2158}{135} for y in x=\frac{14}{39}y+\frac{35}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{2324}{405}+\frac{35}{3}
Multiply \frac{14}{39} times -\frac{2158}{135} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{2401}{405}
Add \frac{35}{3} to -\frac{2324}{405} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{2401}{405},y=-\frac{2158}{135}
The system is now solved.
13\times 3x-7\times 2y=455
Consider the first equation. Multiply both sides of the equation by 91, the least common multiple of 7,13.
39x-7\times 2y=455
Multiply 13 and 3 to get 39.
39x-14y=455
Multiply -7 and 2 to get -14.
39x-14y=455,x+\frac{1}{3}y=\frac{3}{5}
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}455\\\frac{3}{5}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}455\\\frac{3}{5}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}455\\\frac{3}{5}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}39&-14\\1&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}455\\\frac{3}{5}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{39\times \frac{1}{3}-\left(-14\right)}&-\frac{-14}{39\times \frac{1}{3}-\left(-14\right)}\\-\frac{1}{39\times \frac{1}{3}-\left(-14\right)}&\frac{39}{39\times \frac{1}{3}-\left(-14\right)}\end{matrix}\right)\left(\begin{matrix}455\\\frac{3}{5}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{81}&\frac{14}{27}\\-\frac{1}{27}&\frac{13}{9}\end{matrix}\right)\left(\begin{matrix}455\\\frac{3}{5}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{81}\times 455+\frac{14}{27}\times \frac{3}{5}\\-\frac{1}{27}\times 455+\frac{13}{9}\times \frac{3}{5}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2401}{405}\\-\frac{2158}{135}\end{matrix}\right)
Do the arithmetic.
x=\frac{2401}{405},y=-\frac{2158}{135}
Extract the matrix elements x and y.
13\times 3x-7\times 2y=455
Consider the first equation. Multiply both sides of the equation by 91, the least common multiple of 7,13.
39x-7\times 2y=455
Multiply 13 and 3 to get 39.
39x-14y=455
Multiply -7 and 2 to get -14.
39x-14y=455,x+\frac{1}{3}y=\frac{3}{5}
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
39x-14y=455,39x+39\times \frac{1}{3}y=39\times \frac{3}{5}
To make 39x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 39.
39x-14y=455,39x+13y=\frac{117}{5}
Simplify.
39x-39x-14y-13y=455-\frac{117}{5}
Subtract 39x+13y=\frac{117}{5} from 39x-14y=455 by subtracting like terms on each side of the equal sign.
-14y-13y=455-\frac{117}{5}
Add 39x to -39x. Terms 39x and -39x cancel out, leaving an equation with only one variable that can be solved.
-27y=455-\frac{117}{5}
Add -14y to -13y.
-27y=\frac{2158}{5}
Add 455 to -\frac{117}{5}.
y=-\frac{2158}{135}
Divide both sides by -27.
x+\frac{1}{3}\left(-\frac{2158}{135}\right)=\frac{3}{5}
Substitute -\frac{2158}{135} for y in x+\frac{1}{3}y=\frac{3}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x-\frac{2158}{405}=\frac{3}{5}
Multiply \frac{1}{3} times -\frac{2158}{135} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{2401}{405}
Add \frac{2158}{405} to both sides of the equation.
x=\frac{2401}{405},y=-\frac{2158}{135}
The system is now solved.